IMPLEMENTATION OF THE NAIVE BAYES CLASSIFIER ALGORITHM FOR CLASSIFICATION OF COMMUNITY SENTIMENT ABOUT DEPRESSION ON YOUTUBE
Abstract
Depression is a disease that knows no age, gender and social status. WHO states that more than 264 million people suffer from depression, people with depression will continue to grow if public knowledge about mental health is still low, especially in Indonesia. This can be known from the way the community responds to a case. This study aims to determine public sentiment towards people with depression by classifying comments using the Niave Bayes Classifier (NBC) algorithm and adding the Term Frequency-inverse Document Frequency (TF-IDF) method as a feature extraction method. Sentiment used as data is obtained from YouTube comments on several news media accounts such as tvOneNews, Kompas TV, Tribunnews, Official iNews, VIVACOID, CNN Indonesia and Tribun Jateng, so that 4783 data are obtained with training data of 3826 and 957 testing data. This sentiment was analyzed by giving three classes, namely positive, neutral and negative. The results of the sentiment analysis were dominated by positive sentiment of 93.31%, followed by negative comments of 6.68% while neutral sentiment was 0%, and the accuracy of the NBC Algorithm was 84.11%.
Downloads
References
U. Hasanah, N. L. Fitri, S. Supardi, and L. PH, “Depression Among College Students Due to the COVID-19 Pandemic,” J. Keperawatan Jiwa, vol. 8, no. 4, p. 421, 2020.
B. G. Sudarsono and S. P. Lestari, “Diagnosa Tingkat Depresi Mahasiswa Akhir Terhadap Penelitian Ilmiah Menggunakan Algoritma K-Nearest Neighbor,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1094–1099, 2020.
N. Hayatin, “IMPLEMENTASI MULTINOMIAL NAÏVE BAYES UNTUK KLASIFIKASI DATA TWEETS MENGANDUNG TERM,” pp. 344–349, 2020.
K. Aulia, L. Amelia, and K. Mental, “Analisis Sentimen Twitter Pada Isu Mental Health Dengan Algoritma Klasifikasi Naive Bayes,” vol. 6, no. 2, pp. 60–65, 2020.
pew research Enter, “No Title,” 2021. [Online]. Available: https://www.pewresearch.org/topic/internet-technology/platforms-services/social-media/. [Accessed: 02-Oct-2021].
M. D. E. Rangkuti, “Analisis topik komentar video beberapa akun youtube e-commerce Indonesia menggunakan metode latent dirichlet allocation,” Repository.Uinjkt.Ac.Id, 2020.
P. Y. Saputra, D. H. Subhi, and F. Z. A. Winatama, “Implementasi Sentimen Analisis Komentar Channel Video Pelayanan Pemerintah Di Youtube Menggunakan Algoritma Naïve Bayes,” J. Inform. Polinema, vol. 5, no. 4, pp. 209–213, 2019.
E. Yulian, “Text Mining dengan K-Means Clustering pada Tema LGBT dalam Arsip Tweet Masyarakat Kota Bandung,” J. Mat. “MANTIK,” vol. 4, no. 1, pp. 53–58, 2018.
H. Muhamad, C. A. Prasojo, N. A. Sugianto, L. Surtiningsih, and I. Cholissodin, “Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, p. 180, 2017.
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Integer J., vol. 2, no. 1, pp. 32–41, 2017.
V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 765–772, 2019.
H. Fan and Y. Qin, “Research on Text Classification Based on Improved TF-IDF Algorithm,” vol. 147, no. Ncce, pp. 501–506, 2018.
M. A. Rofiqi, A. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 1, no. 2, pp. 58–64, 2019.
F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018.
B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 306–312, 2018.
W. Sri, U. Saragih, N. A. Hasibuan, and R. K. Hondroo, “Penerapan Text Mining Dengan Menggunakan Metode TF-IDF Untuk Menentukan Genre Dari Komik,” vol. 4, pp. 191–199, 2020.
A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021.
M. R. Fadhillah, I. Ishak, and P. S. Ramadhan, “Implementasi Sistem Pakar Mendiagnosa Penyakit Penyakit Gastritis Dengan Menggunakan Metode Teorema Bayes,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 4, no. 1, p. 1, 2021.
F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” M.Sc. Thesis, Append. D, vol. pp, pp. 39–46, 2003.
P. O. A. Sunarya, R. Refianti, A. B. Mutiara, and W. Octaviani, “Comparison of accuracy between convolutional neural networks and Naïve Bayes Classifiers in sentiment analysis on Twitter,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 77–86, 2019.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
Copyright (c) 2022 Sri Mulyani, Rice Novita
This work is licensed under a Creative Commons Attribution 4.0 International License.