ENHANCING COLLABORATION DATA MANAGEMENT THROUGH DATA WAREHOUSE DESIGN: MEETING BAN-PT ACCREDITATION AND KERMA REPORTING REQUIREMENTS IN HIGHER EDUCATION
Abstract
In higher education institutions, effective management of collaboration data is crucial for academic reporting and strategic planning. This study addresses the challenges of managing diverse data types and the necessity for streamlined data management to meet BAN-PT accreditation and Kerma reporting requirements. It aims to design and implement a data warehouse utilizing the star schema for improved accessibility and decision-making. Highlighting the development process, special emphasis is placed on the Extract, Transform, Load (ETL) process with Pentaho to assure data integrity and quality. The methodology involves a systematic approach to constructing the data warehouse, aimed at resolving identified challenges through efficient data organization and quality management. Results demonstrate significant enhancements in data accessibility, reporting efficiency, and quality, leading to reduced administrative efforts and improved decision-making. The research also considers the wider implications of such data management systems in academic administration, suggesting the potential of data warehouses in higher education as benchmarks for similar institutional challenges. Future research directions are recommended for optimizing data warehouse designs and adapting to evolving academic standards, underlining the critical role of advanced data management in meeting stringent accreditation and reporting needs, thus providing a model for technology-driven solutions in educational data management.
Downloads
References
M. Beerkens dan M. Udam, “Stakeholders in Higher Education Quality Assurance: Richness in Diversity?,” High. Educ. Policy, 2017, doi: 10.1057/s41307-016-0032-6.
E. C. Garwe, “Quality Assurance Agencies: Creating a Conducive Environment for Academic Integrity,” South Afr. J. Sci., 2019, doi: 10.17159/sajs.2019/6231.
S. A. Babikir Ali, M. N. Ahmad, N. H. Zakaria, A. M. Arbab, dan K. B. Abdalla Badr, “Assessing Quality of Academic Programmes: Comparing Different Sets of Standards,” Qual. Assur. Educ., 2018, doi: 10.1108/qae-09-2016-0051.
Z.-Y. Guo dan T. Zou, “Influencing Factors and Forecasting Statistics of Enterprise Market Sales Based on Big Data and Intelligent IoT,” Wirel. Commun. Mob. Comput., 2021, doi: 10.1155/2021/9981581.
A. R. Iskandar dan A. Purno, “Transition Strategies of Change Management for the Succesful Implementation of Data Warehouse of Higher Education in Indonesia,” J. Data Sci. Its Appl., 2018, doi: 10.21108/jdsa.2018.1.2.
V. I. Ivanoti, M. Royani, dan S. Samidi, “DATA WAREHOUSE MODEL BASED ON KIMBALL METHODOLOGY TO SUPPORT DECISION MAKING IN ASSET MAINTENANCE,” J. Tek. Inform. Jutif, vol. 4, no. 1, Art. no. 1, Feb 2023, doi: 10.52436/1.jutif.2023.4.1.628.
A. W. Kusuma dan D. Mahdiana, “DEVELOPMENT OF DATA WAREHOUSE TO PREDICATE THE REGARDING OF UMROH CONGREGATIONS USING THE MANEAREST NEIGHBOUR ALGORITHM (CASE STUDY PT. BAHANA SUKSES SEJAHTERA),” J. Tek. Inform. Jutif, vol. 3, no. 4, Art. no. 4, Agu 2022, doi: 10.20884/1.jutif.2022.3.4.265.
M. Asmita, H. Henny, dan S. Samidi, “DATA WAREHOUSE MODELLING INFORMATION SECURITY LOG MANAGEMENT IN BUILDING A SECURITY OPERATION CENTER IN CENTRAL GOVERNMENT AGENCIES WITH KIMBALL METHOD,” J. Tek. Inform. Jutif, vol. 4, no. 4, Art. no. 4, Sep 2023, doi: 10.52436/1.jutif.2023.4.4.649.
F. Z. Alfaiz dan M. Maryam, “IMPLEMENTATION TELEGRAM CHAT BOT ON STUDENT ORIENTATION PERIOD REGISTRATION SYSTEM FOR EFFICIENCY OF DATA MANAGEMENT,” J. Tek. Inform. Jutif, vol. 2, no. 2, Art. no. 2, Mar 2021, doi: 10.20884/1.jutif.2021.2.2.56.
N. Hidayat, D. Iskandar, L. Afuan, A. K. Nugroho, dan N. Arwiansyah, “ANALYSIS AND DESIGN OF DATA WAREHOUSE BASED ON SNDIKTI USING DATA WAREHOUSE LIFE CYCLE METHOD AT UNSOED ENGINEERING FACULTY,” J. Tek. Inform. Jutif, vol. 3, no. 3, Art. no. 3, Agu 2022, doi: 10.20884/1.jutif.2022.3.3.514.
T. Z. Dessiaming, S. Anraeni, dan S. Pomalingo, “COLLEGE ACADEMIC DATA ANALYSIS USING DATA VISUALIZATION,” J. Tek. Inform. Jutif, vol. 3, no. 5, Art. no. 5, Okt 2022, doi: 10.20884/1.jutif.2022.3.5.310.
V. Kumar dan R. Thareja, “Goal Structured Requirement Engineering and Traceability Model for Data Warehouses,” Int. J. Inf. Technol. Comput. Sci., 2013, doi: 10.5815/ijitcs.2013.12.10.
R. Shijitha, P. Karthigaikumar, dan A. Paul, “Data Warehouse Design for Big Data in Academia,” Comput. Mater. Contin., 2022, doi: 10.32604/cmc.2022.016676.
V. Shendryk, Y. Parfenenko, O. Boiko, S. Shendryk, dan Y. Bielka, “Aggregation of Multidimensional Data for the Decision Support Process for the Management of Microgrids With Renewable Energy Sources,” Technol. Audit Prod. Reserv., 2022, doi: 10.15587/2706-5448.2022.255957.
Y. Zhang, X. Zhou, Y. Zhang, M. Su, dan S. Wang, “Virtual Denormalization via Array Index Reference for Main Memory OLAP,” Ieee Trans. Knowl. Data Eng., 2016, doi: 10.1109/tkde.2015.2499199.
A. A. Rinaldo Fernandes, “The Effect of Organization Culture and Technology on Motivation, Knowledge Asset and Knowledge Management,” Int. J. Law Manag., 2018, doi: 10.1108/ijlma-05-2017-0105.
S. Šuman, “Big Data Management Challenges,” Int. J. Adv. Trends Comput. Sci. Eng., 2020, doi: 10.30534/ijatcse/2020/102912020.
A. Filiana, A. G. Prabawati, M. N. Anggia Rini, G. Virginia, dan B. Susanto, “Perancangan Data Warehouse Perguruan Tinggi Untuk Kinerja Penelitian Dan Pengabdian Kepada Masyarakat,” J. Tek. Inform. Dan Sist. Inf., 2020, doi: 10.28932/jutisi.v6i2.2557.
Copyright (c) 2024 Arif Mu'amar Wahid, Lasmedi Afuan, Fandy Setyo Utomo

This work is licensed under a Creative Commons Attribution 4.0 International License.