APPLICATION OF MACHINE LEARNING IN DETERMINING THE CLASSIFICATION OF CHILDREN'S NUTRITION WITH DECISION TREE
Abstract
The problem of nutrition for children is a health problem that must be solved by the government. Malnutrition is a very important problem in the development of children, especially during the growth period. Lack of nutritional intake in children will have a negative impact on resistance to the virus. This will risk death caused by malnutrition. There is direct monitoring from the government, hospitals, and health offices in looking at the classification of nutrition in children in a system. This study aims to classify the nutritional status of children using a machine learning model, which then the final result can show the classification of nutritional vulnerability in each patient at the North Aceh Hospital. The stages of the research include the identification of theories about nutritional problems. Second, data collection is in the form of symptoms and diagnosis of disease classification in machine learning implementation. The third is to analyze the data using the research and development (R&D) method according to the classification of children's nutrition. Finally, the implementation of the patient classification model with decision tree into machine learning The variables included in the system include JK(X1), U (X2), BB(X3), TB (X4), and BB (X3), which are the variables that have the most influence on malnutrition in children. The results of this study for testing weight 16, height 9.7, age 33 months, nutritional value 54,23772 which the program output results are normal. Patient Syafira Nisman, weight 9, height 72, age 21 months, suffered from malnutrition. The results of the research on the application of machine learning for the classification of malnutrition using the decision tree method make it easier for patients and hospitals to classify children's nutrition.
Downloads
References
A. Dharmawan, Zahraini, “Situasi Anak Pendek (stunting) di Indonesia,” Bul. Jendela Data dan Inf. Kesehat., vol. 1, no. 2, 2018.
H. Hartono, M. K., & Hendry, “Prediction Of Baby Birth Rate Using Naïve Bayes Classification Algorithm In Randau Village,” J. Tek. Inform., vol. 3, no. 4, pp. 863–868, 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.4.302
S. Sharifzadeh, G., Mehrjoofard, H., & Raghebi, “Prevalence of malnutrition in under 6-year olds in South Khorasan, Iran,” Iran. J. Pediatr., vol. 20, no. 4, p. 435, 2018.
H. Pohan, M. Zarlis, E. Irawan, H. Okprana, and Y. Pranayama, “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia,” JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 97–104, Nov. 2021, doi: 10.53842/juki.v3i2.69.
H. Hafizan and A. N. Putri, “Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 1, no. 2, pp. 68–72, 2020, doi: 10.30645/kesatria.v1i2.23.
M. Ula, A. F. Ulva, and M. Mauliza, “Implementasi Machine Learning Dengan Model Case Based Reasoning Dalam Mendiagnosa Gizi Buruk Pada Anak,” J. Inform. Kaputama, vol. 5, no. 2, pp. 333–339, 2021.
K. Hastuti, “Analisis komparasi algoritma klasifikasi data mining untuk prediksi mahasiswa non aktif,” vol. 2012, no. Semantik, pp. 241–249, 2012.
W. Mutika and D. Syamsul, “Analysis Of Malnutritional Status Problems On Toddlers At South Teupah Health Center Simeulue,” J. Kesehat. Glob., vol. 1, no. 3, pp. 127–136, 2018.
P. Meilina, “Penerapan Data Mining dengan Metode Klasifikasi Menggunakan Decision Tree dan Regresi,” J. Teknol. Univ. Muhammadiyah Jakarta, vol. 7, no. 1, pp. 11–20, 2015, [Online]. Available: jurnal.ftumj.ac.id/index.php/jurtek
I. Agustina, J. Eska, and I. R. Harahap, “Application of C4 . 5 Algorithm for Determination of the Community of Recipients of Prosperous Family Cards in the Village of Sukaramai Based on Web,” J. Tek. Inform., vol. 3, no. 2, pp. 1–7, 2022.
P. Riswanto, R. Z. A. Aziz, and S. -, “PENERAPAN DECISION TREE C4.5 Sebagai Seleksi Fitur Dan Support Vector Machine (Svm) Untuk Diagnosa Kanker Payudara,” J. Inform., vol. 19, no. 1, pp. 54–61, Jun. 2019, doi: 10.30873/ji.v19i1.1442.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 103–108, 2021, doi: 10.30871/jaic.v5i2.3200.
A. Sutedi, H. Aulawi, E. Walujodjati, D. Destiani, and S. Fatimah, “C4 . 5 ALGORITHM FOR DISASTER IDENTIFIER SYSTEM,” vol. 3, no. 3, pp. 1–6, 2022.
F. M Hidayat, Noer, “PENENTUAN GIZI ANAK MENGGUNAKAN KOMPARASI METODE C4. 5,” NJCA (Nusantara J. Comput. Its Appl., vol. 5, no. 2, pp. 85–93, 2020, doi: http://dx.doi.org/10.36564/njca.v5i2.202.
S. & R. M Ula, Ananda, Mauliza, “Implementation of Machine Learning in Determining Nutritional Status using the Complete Linkage Agglomerative Hierarchical Clustering Method,” J. Mantik, vol. 5, no. 3, pp. 1910–1914, 2021.
G. Oematan and U. Aspatria, “FAKTOR – Faktor Penentu Kejadian Gizi Buruk Stunting Di Daerah Dengan Karakteristik Pertanian Lahan Kering Kabupaten Kupang , PROVINSI NUSA TENGGARA TIMUR,” J. Pangan Gizi dan Kesehat., vol. 5, no. 1, pp. 725–736, Apr. 2013, doi: 10.51556/ejpazih.v5i1.88.
Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, and M. Waluyo, “Prediction for Cooperative Credit Eligibility Using Data Mining Classification With C4.5 Algorithm,” J. Tek. Inform., vol. 2, no. 2, pp. 67–74, 2021, doi: 10.20884/1.jutif.2021.2.2.49.
W. H. Ibrahim and I. Maita, “Sistem Informasi Pelayanan Publikberbasis Web Pada Dinas Pekerjaan Umum Kabupaten Kampar,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 3, no. 2, pp. 17–22, 2017.
T. R. Asep Hardiyanto Nugroho, “Perancangan Aplikasi Sistem Pengolahan Data Penduduk Dikelurahan Desa Kaduronyok Kecamatan Cisata , Kabupaten Pandeglang Berbasis Web,” Jutis, vol. 8, no. 1, pp. 1–15, 2020.
I. Agustina, I., Eska, J., & Ramadona Harahap, “APPLICATION OF C4.5 ALGORITHM FOR DETERMINATION OF THE COMMUNITY OF RECIPIENTS OF PROSPEROUS FAMILY CARDS IN THE VILLAGE OF SUKARAMAI BASED ON WEB,” J. Tek. Inform., vol. 3, no. 2, pp. 211–217, 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.2.164.
A. P. Mutammimul Ula, Fajar Tri Tri Anjani, Ananda Faridhatul Ulva, Ilham Sahputra, “Application Of Machine Learning With The Binary Decision Tree Model In Determining The Classification Of Dental Disease,” J. INFORMATICS Telecommun. Eng., vol. 6, no. 1, pp. 170–179, 2022, doi: https://doi.org/10.31289/jite.v6i1.7341.
Y. I. Kurniawan and T. I. Barokah, “Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan K-Nearest Neighbor,” J. Ilm. Matrik, vol. 22, no. 1, pp. 73–82, 2020, doi: 10.33557/JURNALMATRIK.V22I1.843.
Copyright (c) 2022 mutammimul_ula mutammimulula
This work is licensed under a Creative Commons Attribution 4.0 International License.