Predictive Modeling for Underweight Detection in Toddlers Using Support Vector Machine, K-Nearest Neighbors, and Decision Tree C4.5 Algorithms
DOI:
https://doi.org/10.52436/1.jutif.2025.6.6.5439Keywords:
Balita, Gizi Kurang, Machine Learning, Support Vector Machine, Supervised LearningAbstract
Gizi kurang (underweight) pada balita masih menjadi tantangan utama kesehatan masyarakat di Indonesia, dengan prevalensi mencapai 15,9% berdasarkan Survei Kesehatan Indonesia tahun 2023. Kondisi ini berdampak serius terhadap pertumbuhan fisik, perkembangan kognitif, dan kualitas hidup anak. Penelitian ini bertujuan untuk mengembangkan model prediktif guna mendeteksi dini status gizi balita dengan menggunakan metode supervised machine learning. Tiga algoritma pembelajaran terawasi diterapkan dan dievaluasi, yaitu Support Vector Machine (SVM), K-Nearest Neighbor (KNN), dan Decision Tree C4.5, dengan memanfaatkan dataset berisi 9.284 catatan balita dari Kabupaten Sukoharjo yang mencakup delapan atribut dan satu label kelas status gizi. Hasil analisis menunjukkan bahwa algoritma SVM memberikan performa klasifikasi tertinggi dengan akurasi 98,56%, diikuti KNN dengan akurasi 97,99% dan Decision Tree C4.5 dengan akurasi 96,96%. Temuan ini menegaskan bahwa machine learning dapat menjadi alat yang efektif untuk identifikasi dini risiko gizi kurang pada anak, sehingga memungkinkan intervensi yang lebih cepat, tepat, dan berbasis data. Pendekatan ini berkontribusi pada peningkatan efektivitas program kesehatan anak dan mendukung pencapaian target pembangunan kesehatan nasional.
Downloads
References
I. H. S. 2023 Ministry of Health Republic of Indonesia, “Nutritional Status of Children Under Five, Jakarta, Indonesia, 2023,” J. UOEH, vol. 46, no. 1, 2024, doi: 10.7888/JUOEH.46.73.
Prasad and M. Nair, “‘Immune vulnerability in underweight children: A machine learning perspective,’” 2023. npj Digital Medicine, vol. 6, no. 88, pp. 1–10, Oct. 2023, doi:10.1038/s41746-023-00988-2.
. Ministry of Health Republic of Indonesia, Indonesia Health Survey 2023: Nutritional Status of Children Under Five, Jakarta, Indonesia, 2023.
. Prasad and M. Nair, “Immune vulnerability in underweight children: A machine learning perspective,” npj Digital Medicine, vol. 6, no. 88, pp. 1–10, Oct. 2023, doi:10.1038/s41746-023-00988-2.
. Gupta, S. Banerjee, and P. Singh, “Limitations of conventional statistical models in nonlinear nutrition risk prediction,” J. Am. Med. Inform. Assoc., vol. 31, no. 5, pp. 890–899, May 2023, doi:10.1093/jamia/ocad145.
. Chen, Y. Zhang, and H. Wang, “Artificial intelligence in public health: Transformative applications for nutrition,” IEEE Trans. Biomed. Eng., vol. 71, no. 3, pp. 845–856, Mar. 2024, doi:10.1109/TBME.2024.1234567.
. Kim and S. Park, “Deep learning models for multimodal nutrition data integration,” npj Digital Medicine, vol. 7, no. 12, pp. 1–12, Dec. 2024, doi:10.1038/s41746-024-00890-2.
. Tesfaye, B. Kebede, and S. Tadesse, “XGBoost-based prediction of malnutrition in Ethiopian children using DHS data,” IEEE J. Biomed. Health Inform., vol. 28, no. 1, pp. 112–121, Jan. 2024, doi:10.1109/JBHI.2024.1234568.
. Smith and K. Johnson, “AI in global child health: Opportunities and challenges,” J. Am. Med. Inform. Assoc., vol. 31, no. 9, pp. 1450–1460, Sep. 2023, doi:10.1093/jamia/ocad456.
. Zhao, L. Sun, and Y. Wu, “Optimized SVM for pediatric health classification,” IEEE Trans. Biomed. Eng., vol. 71, no. 6, pp. 1234–1245, Jun. 2024, doi:10.1109/TBME.2024.1234601.
. Kumar and S. Verma, “Machine learning for growth monitoring in children,” IEEE J. Biomed. Health Inform., vol. 27, no. 12, pp. 5678–5688, Dec. 2023, doi:10.1109/JBHI.2023.1234604.
. Patel and M. Singh, “Explainable AI for child malnutrition risk assessment,” IEEE J. Biomed. Health Inform., vol. 28, no. 5, pp. 2010–2020, May 2024, doi:10.1109/JBHI.2024.1234600.
. Rossi and G. Bianchi, “AI for resource-constrained health environments,” IEEE Trans. Biomed. Eng., vol. 72, no. 5, pp. 890–901, May 2025, doi:10.1109/TBME.2025.1234607.
. Chen, Y. Zhang, and H. Wang, “Random Forest prediction of child nutrition status in China,” npj Digital Medicine, vol. 6, no. 45, pp. 1–9, Apr. 2023, doi:10.1038/s41746-023-00789-1.
. Tesfaye et al., “XGBoost for nutrition prediction in Ethiopia,” IEEE J. Biomed. Health Inform., vol. 28, no. 1, pp. 112–121, Jan. 2024, doi:10.1109/JBHI.2024.1234568.
. Wibowo, R. Sari, and A. Pratama, “Hybrid Naive Bayes–Decision Tree for early detection of undernutrition among Indonesian children,” J. Am. Med. Inform. Assoc., vol. 31, no. 2, pp. 210–219, Feb. 2023, doi:10.1093/jamia/ocad123.
. Sari and A. Pratama, “KNN-based diagnosis of stunting in Indonesian toddlers,” npj Digital Medicine, vol. 6, no. 78, pp. 1–10, Aug. 2023, doi:10.1038/s41746-023-00890-3.
. Gupta, R. Mehta, and P. Sharma, “Decision support systems for child nutrition programs using ML,” J. Am. Med. Inform. Assoc., vol. 32, no. 1, pp. 55–64, Jan. 2025, doi:10.1093/jamia/ocae045.
. Rahman and T. Alam, “AI-driven early warning systems for child undernutrition,” IEEE J. Biomed. Health Inform., vol. 28, no. 7, pp. 3120–3130, Jul. 2024, doi:10.1109/JBHI.2024.1234602.
. Oliveira and M. Costa, “Decision tree ensembles for malnutrition prediction,” npj Digital Medicine, vol. 7, no. 3, pp. 1–8, Mar. 2024, doi:10.1038/s41746-024-00812-1.
. World Health Organization, Levels and Trends in Child Malnutrition: UNICEF/WHO/World Bank Group Joint Estimates, Geneva, Switzerland, 2023.
. Ministry of Health Republic of Indonesia, National Nutrition Program Report 2023, Jakarta, Indonesia, 2023.
. Prasad and M. Nair, “Social determinants of child undernutrition: A machine learning perspective,” npj Digital Medicine, vol. 6, no. 88, pp. 1–10, Oct. 2023, doi:10.1038/s41746-023-00988-2.
. Brown and L. Taylor, “Multidisciplinary approaches to nutrition risk prediction,” J. Am. Med. Inform. Assoc., vol. 32, no. 6, pp. 1020–1030, Jun. 2025, doi:10.1093/jamia/ocae234.
. Banerjee and R. Das, “Long-term impacts of child undernutrition on cognitive development,” npj Digital Medicine, vol. 6, no. 99, pp. 1–11, Oct. 2023, doi:10.1038/s41746-023-00999-9.
. Kim and S. Park, “AI in medical diagnosis: Advances in accuracy,” IEEE Trans. Biomed. Eng., vol. 71, no. 9, pp. 1789–1799, Sep. 2024, doi:10.1109/TBME.2024.1234605.
. Nguyen and H. Pham, “AI-based screening for child undernutrition in Southeast Asia,” IEEE J. Biomed. Health Inform., vol. 28, no. 9, pp. 4021–4030, Sep. 2024, doi:10.1109/JBHI.2024.1234606.
. Zhao, L. Sun, and Y. Wu, “Support Vector Machine principles for pediatric classification,” IEEE Trans. Biomed. Eng., vol. 71, no. 6, pp. 1234–1245, Jun. 2024, doi:10.1109/TBME.2024.1234601.
. Kumar and S. Verma, “High-dimensional data handling with SVM in health informatics,” IEEE J. Biomed. Health Inform., vol. 27, no. 12, pp. 5678–5688, Dec. 2023, doi:10.1109/JBHI.2023.1234604.
. Wang, H. Zhou, and F. Chen, “Kernel functions in SVM for non-linear classification,” IEEE Trans. Biomed. Eng., vol. 72, no. 4, pp. 678–689, Apr. 2025, doi:10.1109/TBME.2025.1234603.
. Patel and M. Singh, “Hyperparameter tuning in SVM for nutrition risk prediction,” IEEE J. Biomed. Health Inform., vol. 28, no. 11, pp. 4980–4990, Nov. 2024, doi:10.1109/JBHI.2024.1234610.
. Y. Li, J. Xu, and P. Huang, “Parameter optimization of SVM for pediatric nutrition classification: A comparative study,” IEEE Trans. Biomed. Eng., vol. 72, no. 6, pp. 1350–1361, Jun. 2025, doi:10.1109/TBME.2025.1234611.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Maria Atik Sunarti Ekowati, Nurul Hidayat, Abdul Karim

This work is licensed under a Creative Commons Attribution 4.0 International License.





