Predicting Underweight Toddlers in Gorontalo Province Using Supervised Learning Algorithms

Authors

  • Muhajir Yunus Digital Business, Universitas Muhammadiyah Gorontalo, Indonesia
  • St Suryah Indah Nurdin Midwifery, Universitas Muhammadiyah Gorontalo, Indonesia
  • Fitriah Informatics, Universitas Muhammadiyah Bengkulu, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.5.5331

Keywords:

Decision Tree C4.5, K-Nearest Neighbor, Naïve Bayes, Supervised Learning, Toddlers, Underweight

Abstract

Malnutrition in toddlers, notably underweight, remains a critical public health issue in Indonesia. According to the 2023 Indonesian Health Survey, the prevalence of underweight among toddlers has reached 15.9%. This condition has a significant impact on children's physical growth, cognitive development, and overall quality of life. This study aims to develop a predictive model for early detection of toddler nutritional status using three supervised machine learning algorithms: Decision Tree C4.5, K-Nearest Neighbor, and Naïve Bayes. The dataset consisted of 9,284 toddler records from Gorontalo Province, comprising eight attributes and one class label indicating nutritional status. Evaluation results showed that the Decision Tree C4.5 algorithm delivered the best performance with 98.56% accuracy. The K-Nearest Neighbor model achieved an accuracy of 97.99%, while the Naïve Bayes model obtained 96.96%. These findings demonstrate that machine learning can be an effective tool for identifying toddlers at risk of undernutrition early in their development. Beyond individual predictions, the proposed model represents a significant advancement in health informatics by providing a scalable decision-support system. This system can enhance the efficiency and precision of public health interventions, enabling faster, data-driven responses to combat malnutrition and improve child health outcomes across broader populations.

Downloads

Download data is not yet available.

References

M. R. Nanda, “Malnutrition and Pneumonia among Under-five Children in Sadewa Maternal and Child Hospital, Yogyakarta, Indonesia,” Biosci. Med. J. Biomed. Transl. Res., vol. 6, no. 18, hal. 2980–2984, Feb 2023, doi: 10.37275/bsm.v6i18.742.

S. Thurstans dkk., “The relationship between wasting and stunting in young children: A systematic review,” Matern. Child Nutr., vol. 18, no. 1, Jan 2022, doi: 10.1111/mcn.13246.

G. A. Odei Obeng‐Amoako dkk., “Concurrently wasted and stunted children 6‐59 months in Karamoja, Uganda: prevalence and case detection,” Matern. Child Nutr., vol. 16, no. 4, Okt 2020, doi: 10.1111/mcn.13000.

M. R. K. Chowdhury, M. S. Rahman, B. Billah, R. Kabir, N. K. P. Perera, dan M. Kader, “The prevalence and socio-demographic risk factors of coexistence of stunting, wasting, and underweight among children under five years in Bangladesh: a cross-sectional study,” BMC Nutr., vol. 8, no. 1, hal. 84, Agu 2022, doi: 10.1186/s40795-022-00584-x.

N. Kapci, M. Akcam, T. Koca, S. Dereci, dan M. Kapci, “The nutritional status of hospitalized children: Has this subject been overlooked?,” Turkish J. Gastroenterol., vol. 26, no. 4, Apr 2020, doi: 10.5152/tjg.2015.0013.

R. Amin, T. Akter, R. Ferdous, R. Akter, M. M. Shahriar, dan M. A. Islam, “Joint modelling of anthropometric child undernutrition indicators to identify their risk factors in Bangladesh: evidence from the Multiple Indicator Cluster Survey (MICS) 2019,” BMJ Open, vol. 15, no. 7, hal. e092536, Jul 2025, doi: 10.1136/bmjopen-2024-092536.

W. Su dkk., “Underweight Predicts Greater Risk of Cardiac Mortality Post Acute Myocardial Infarction,” Int. Heart J., vol. 61, no. 4, hal. 658–664, Jul 2020, doi: 10.1536/ihj.19-635.

T. Peters dkk., “Reasons for admission and variance of body weight at referral in female inpatients with anorexia nervosa in Germany,” Child Adolesc. Psychiatry Ment. Health, vol. 15, no. 1, hal. 78, Des 2021, doi: 10.1186/s13034-021-00427-w.

S. A. Bekele dan M. Z. Fetene, “Modeling non-Gaussian data analysis on determinants of underweight among under five children in rural Ethiopia: Ethiopian demographic and health survey 2016 evidences,” PLoS One, vol. 16, no. 5, hal. e0251239, Mei 2021, doi: 10.1371/journal.pone.0251239.

O. S. Balogun, A. M. Asif, M. Akbar, C. Chesneau, dan F. Jamal, “Prevalence and Potential Determinants of Aggregate Anthropometric Failure among Pakistani Children: Findings from a Community Health Survey,” Children, vol. 8, no. 11, hal. 1010, Nov 2021, doi: 10.3390/children8111010.

M. G. Worku, I. Mohanty, Z. Mengesha, dan T. Niyonsenga, “Risk Factors of Standalone and Coexisting Forms of Undernutrition Among Children in Sub-Saharan Africa: A Study Using Data from 26 Country-Based Demographic and Health Surveys,” Nutrients, vol. 17, no. 2, hal. 252, Jan 2025, doi: 10.3390/nu17020252.

M. Z. Nahar dan M. S. Zahangir, “The role of parental education and occupation on undernutrition among children under five in Bangladesh: A rural-urban comparison,” PLoS One, vol. 19, no. 8, hal. e0307257, Agu 2024, doi: 10.1371/journal.pone.0307257.

M. U. Saleem, M. U. Aslam, A. G. Khatir, dan Q. Jiang, “Exploring Risk Factors and Predictive Modeling of Child Malnutrition in Pakistan Using Machine Learning,” Am. J. Hum. Biol., vol. 37, no. 9, Sep 2025, doi: 10.1002/ajhb.70124.

S. M. J. Rahman dkk., “Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach,” PLoS One, vol. 16, no. 6, hal. e0253172, Jun 2021, doi: 10.1371/journal.pone.0253172.

O. V Arueyingho, A. Al-Taie, dan C. McCallum, “Scoping review: Machine learning interventions in the management of healthcare systems,” Digit. Heal., vol. 10, Jan 2024, doi: 10.1177/20552076221144095.

H. M. Fenta, T. Zewotir, dan E. K. Muluneh, “A machine learning classifier approach for identifying the determinants of under-five child undernutrition in Ethiopian administrative zones,” BMC Med. Inform. Decis. Mak., vol. 21, hal. 2–12, Des 2021, doi: 10.1186/s12911-021-01652-1.

M. M. Islam dkk., “Application of machine learning based algorithm for prediction of malnutrition among women in Bangladesh,” Int. J. Cogn. Comput. Eng., vol. 3, hal. 46–57, Jun 2022, doi: 10.1016/j.ijcce.2022.02.002.

F. H. Bitew, C. S. Sparks, dan S. H. Nyarko, “Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia,” Public Health Nutr., vol. 25, no. 2, hal. 269–280, Feb 2022, doi: 10.1017/S1368980021004262.

W. T. Bekele, “Machine learning algorithms for predicting low birth weight in Ethiopia,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, hal. 2–16, Des 2022, doi: 10.1186/s12911-022-01981-9.

M. Yunus, M. K. Biddinika, dan A. Fadlil, “Classification of Stunting in Children Using the C4.5 Algorithm,” J. Online Inform., vol. 8, no. 1, hal. 99–106, Jun 2023, doi: 10.15575/join.v8i1.1062.

R. Mondal dkk., “Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets,” BMC Med. Inform. Decis. Mak., vol. 22, no. S6, hal. 347, Mar 2023, doi: 10.1186/s12911-023-02112-8.

B. Liu dan Z. Sun, “Global Economic Market Forecast and Decision System for IoT and Machine Learning,” Mob. Inf. Syst., vol. 2022, hal. 1–12, Apr 2022, doi: 10.1155/2022/8344791.

S. S. Hajimirzaie dkk., “Predicting postpartum female sexual interest/arousal disorder via adiponectin and biopsychosocial factors: a cohort-based decision tree study,” Sci. Rep., vol. 15, no. 1, hal. 27354, Jul 2025, doi: 10.1038/s41598-025-12025-3.

A. S. Syahab, A. Widiyanto, L. R. Anuggilarso, dan A. B. Wijaya, “Comparison of Machine Learning Algorithms for Classification of Ultraviolet Index,” J. Teknol. Inf. dan Pendidik., vol. 15, no. 2, hal. 132–146, Mar 2023, doi: 10.24036/jtip.v15i2.692.

K. Wang dkk., “Improving Risk Identification of Adverse Outcomes in Chronic Heart Failure Using SMOTE+ENN and Machine Learning,” Risk Manag. Healthc. Policy, vol. Volume 14, hal. 2453–2463, Jun 2021, doi: 10.2147/RMHP.S310295.

M. David dan M. A. Firdaus, “Defect Rate Prediction in Manufacturing Process Using K-Nearest Neighbor Algorithm,” Int. J. Informatics, Econ. Manag. Sci., vol. 3, no. 2, hal. 161, Agu 2024, doi: 10.52362/ijiems.v3i2.1599.

V. S. Kumar dan K. Vidhya, “Heart Plaque Detection with Improved Accuracy using K-Nearest Neighbors classifier Algorithm in comparison with Least Squares Support Vector Machine,” CARDIOMETRY, no. 25, hal. 1590–1594, Feb 2023, doi: 10.18137/cardiometry.2022.25.15901594.

H. A. A. Al-Khamees, N. S. Sani, A. S. Gifal, L. X. W. Liu, dan M. I. Esa, “A dynamic model using k-NN algorithm for predicting diabetes and breast cancer,” Comput. Biol. Med., vol. 192, hal. 110276, Jun 2025, doi: 10.1016/j.compbiomed.2025.110276.

P. S. Bakti dan E. Eliyani, “Application of J48 and Naïve Bayes Algorithms to Predict Ream Bookings at PT. Nippon Presisi Teknik,” Eduvest - J. Univers. Stud., vol. 3, no. 6, hal. 1047–1060, Jun 2023, doi: 10.59188/eduvest.v3i6.834.

F. F. Hasibuan, M. H. Dar, dan G. J. Yanris, “Implementation of the Naïve Bayes Method to determine the Level of Consumer Satisfaction,” SinkrOn, vol. 8, no. 2, hal. 1000–1011, Apr 2023, doi: 10.33395/sinkron.v8i2.12349.

C. B. I. Hulu dan H. T. Sihotang, “Plant Disease Diagnosis Expert System Cardamom (Ammomum Cardamomum l.) Using The Naive Bayes Method Web-Based,” J. Mandiri IT, vol. 10, no. 2, hal. 68–73, Jan 2022, doi: 10.35335/mandiri.v10i2.94.

Y. Zhao dkk., “Prediction of Drug‐Induced Liver Injury: From Molecular Physicochemical Properties and Scaffold Architectures to Machine Learning Approaches,” Chem. Biol. Drug Des., vol. 104, no. 2, Agu 2024, doi: 10.1111/cbdd.14607.

S. Gitto dkk., “CT and MRI radiomics of bone and soft-tissue sarcomas: an updated systematic review of reproducibility and validation strategies,” Insights Imaging, vol. 15, no. 1, hal. 54, Feb 2024, doi: 10.1186/s13244-024-01614-x.

F. Schroeder, S. Fairclough, F. Dehais, dan M. Richins, “The impact of cross-validation choices on pBCI classification metrics: lessons for transparent reporting,” Front. Neuroergonomics, vol. 6, Jul 2025, doi: 10.3389/fnrgo.2025.1582724.

J. Cui dkk., “Development and validation of an explainable machine learning model to predict Delphian lymph node metastasis in papillary thyroid cancer: a large cohort study,” J. Cancer, vol. 16, no. 6, hal. 2041–2061, Mar 2025, doi: 10.7150/jca.110141.

S. Sathyanarayanan, “Confusion Matrix-Based Performance Evaluation Metrics,” Ajbr, hal. 4023–4031, 2024, doi: 10.53555/ajbr.v27i4s.4345.

N. K. E. Sapitri, U. Sa’adah, dan N. Shofianah, “Knowledge Discovery From Confusion Matrix of Pruned CART in Imbalanced Microarray Data Ovarian Cancer Classification,” Sci. J. Informatics, vol. 11, no. 1, hal. 227–236, 2024, doi: 10.15294/sji.v11i1.50077.

E. Asci dkk., “A Deep Learning Approach to Automatic Tooth Caries Segmentation in Panoramic Radiographs of Children in Primary Dentition, Mixed Dentition, and Permanent Dentition,” Children, vol. 11, no. 6, hal. 690, 2024, doi: 10.3390/children11060690.

J. E. van Engelen dan H. H. Hoos, “A survey on semi-supervised learning,” Mach. Learn., vol. 109, no. 2, hal. 373–440, Feb 2020, doi: 10.1007/s10994-019-05855-6.

A. Tiwari, “Supervised learning: From theory to applications,” in Artificial Intelligence and Machine Learning for EDGE Computing, Elsevier, 2022, hal. 23–32. doi: 10.1016/B978-0-12-824054-0.00026-5.

J. Gui dkk., “A Survey on Self-Supervised Learning: Algorithms, Applications, and Future Trends,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, hal. 9052–9071, Des 2024, doi: 10.1109/TPAMI.2024.3415112.

J. M. Duarte dan L. Berton, “A review of semi-supervised learning for text classification,” Artif. Intell. Rev., vol. 56, no. 9, hal. 9401–9469, Sep 2023, doi: 10.1007/s10462-023-10393-8.

X. Wang, X. Lin, dan X. Dang, “Supervised learning in spiking neural networks: A review of algorithms and evaluations,” Neural Networks, vol. 125, hal. 258–280, Mei 2020, doi: 10.1016/j.neunet.2020.02.011.

Additional Files

Published

2025-10-23

How to Cite

[1]
M. Yunus, S. S. I. Nurdin, and F. Fitriah, “Predicting Underweight Toddlers in Gorontalo Province Using Supervised Learning Algorithms”, J. Tek. Inform. (JUTIF), vol. 6, no. 5, pp. 3857–3870, Oct. 2025.