Comparative Analysis Of Machine Learning Algorithms For Dengue Fever Prediction Based On Clinical And Laboratory Features

Authors

  • Sriyanto Department of Informatics, Institute Informatics and Business Darmajaya, Indonesia
  • RZ Abdul Aziz Department of Informatics, Institute Informatics and Business Darmajaya, Indonesia
  • Dewi Agushinta Rahayu Department of Informatics, Institute Informatics and Business Darmajaya, Indonesia
  • Zuriati Department of Information Technology, Universitas Gunadama, Indonesia
  • Mohd Faizal Abdollah Department of Internet Engineering Technology, Politeknik Negeri Lampung, Indonesia
  • Irianto Faculty of Artificial Intelligence and Cyber Security, Universiti Teknikal Malaysia Melaka, Malaysia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.6.5309

Keywords:

Classification Algorithms, Clinical Data, Confusion Matrix, Dengue Fever, Machine Learning, ROC Curve

Abstract

Dengue fever (DF) remains a global health problem requiring accurate early detection to prevent severe complications. This study applies machine learning (ML) algorithms to clinical and laboratory data for improving diagnostic accuracy. Six classifiers were compared: Decision Tree (DT), K-Nearest Neighbor (KNN), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), and Support Vector Machine (SVM). The dataset consists of 1,003 patient records with nine feature columns, of which 989 were used after preprocessing. Class distribution was imbalanced, with 67.6% positive and 32.4% negative cases. Model performance was evaluated using 10-fold cross-validation based on accuracy, precision, recall, F1-score, confusion matrix, and ROC curve analysis. The results indicate that DT achieved the highest performance with 99.4% accuracy, 99.4% precision, 99.7% recall, and 99.6% F1-score, slightly outperforming NN. KNN, LR, and SVM produced comparable results, while NB showed substantially lower accuracy (44.3%) and limited discriminatory power. ROC analysis confirmed these findings, with DT, NN, SVM, and LR achieving AUC values between 0.992 and 0.999, whereas NB performed poorly. These findings highlight the strong potential of ML algorithms, particularly DT, to support medical decision systems, strengthen informatics-based decision support applications, and enhance the accuracy and speed of dengue diagnosis in clinical practice.

Downloads

Download data is not yet available.

References

A. Amir, A. Iqbal, F. Jaweed, A. F, H. H, and A. Z, “Exploring the current and prospective role of artificial intelligence in disease diagnosis,” Annals of Medicine & Surgery, vol. 86, no. 2, pp. 943–949, 2024, doi: 10.1097/ms9.0000000000001700.

B. C. J. Cheah, C. R. Vicente, and K. R. Chan, “Machine Learning and Artificial Intelligence for Infectious Disease Surveillance, Diagnosis, and Prognosis,” Viruses, vol. 17, no. 7, pp. 1–32, 2025, doi: 10.3390/v17070882.

N. Sakinah, T. Badriyah, I. Syarif, and P. Korespondensi, “Analisis Kinerja Algoritma Mesin Pembelajaran Untuk Klasifikasi Penyakit Stroke Menggunakan Citra Ct Scan Performance Analysis Machine Learning Algorithms for Classification of Stroke Using Ct Scan Images,” Jurrnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, pp. 833–844, 2020, doi: 10.25126/jtiik.202073482.

M. A. S. Mim, Md. Minhajul Hayat; Assaduzzaman, Md; Mahmud, Arif; Nirob, “Predictive Clinical Dataset for Dengue Fever Using Vital Signs and Blood Parameters,” 2024. doi: 10.17632/xrsbyjs24t.1.

P. Silitonga, A. Bustamam, and H. Muradi, “Comparison of dengue predictive models developed using artificial neural network and discriminant analysis with small dataset,” Applied Sciences (Switzerland), vol. 11, no. 3, pp. 1–16, 2021, doi: 10.3390/app11030943.

S. Hayat, R. Anwar, and S. Aziz, “An automated diagnosis & classification of dengue using advance artificial neural network,” Computing and Artificial Intelligence, vol. 3, no. 1, p. 1489, 2024, doi: 10.59400/cai1489.

B. C. Bohm, F. E. de M. Borges, S. C. M. Silva, A. T. Soares, and D. D. Ferreira, “Utilization of machine learning for dengue case screening,” BMC Public Health, vol. 24, no. 1, pp. 1–9, 2024, doi: 10.1186/s12889-024-19083-8.

H. Mayrose, G. M. Bairy, N. Sampathila, S. Belurkar, and K. Saravu, “Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics,” Diagnostics, vol. 13, no. 2, 2023, doi: 10.3390/diagnostics13020220.

C. Edussuriya, S. Deegalla, and I. Gawarammana, “An accurate mathematical model predicting number of dengue cases in tropics,” PLoS Neglected Tropical Diseases, vol. 15, no. 11, pp. 1–15, 2021, doi: 10.1371/journal.pntd.0009756.

D. Setiadi, A. Arif, and A. Oktaria, “Comparison of K-Nearest Neighbor and Naive Bayes Algorithms for Tuberculosis Diagnosis Classification,” Journal of Artificial Intelligence and Software Engineering (J-AISE), vol. 5, no. 1, p. 176, 2025, doi: 10.30811/jaise.v5i1.6456.

J. Rusman, B. Z. Haryati, and A. Michael, “Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi,” Jurnal Komputer dan Informatika, vol. 11, no. 2, pp. 195–202, 2023, doi: 10.35508/jicon.v11i2.12571.

Z. Zuriati and N. Qomariyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma K-Nearest Neighbor (KNN),” ROUTERS: Jurnal Sistem dan Teknologi Informasi, vol. 1, no. 1, pp. 1–8, 2022, doi: 10.25181/rt.v1i1.2665.

W. Sholihah, A. S. Handayani, and Sarjana, “Revolutionizing Healthcare: Comprehensive Evaluation and Optimization of SVM Kernels for Precise General Health Diagnosis,” Scientific Journal of Informatics, vol. 10, no. 4, p. 445, 2023, doi: 10.15294/sji.v10i4.46430.

S. Kaur, S. Sharma, A. U. Rehman, E. T. Eldi, and N. A. Ghamry, “Predicting Infection Positivity, Risk Estimation, and Disease Prognosis in Dengue Infected Patients by ML Expert System,” Sustainability (Switzerland), vol. 14, no. 20, pp. 1–20, 2022, doi: 10.3390/su142013490.

Y. P. Bria, P. A. Nani, Y. C. H. Siki, N. M. R. Mamulak, E. M. Meolbatak, and R. D. Guntur, “Leveraging a Random Forest Classifier and SVMSMOTE for an Early-stage Dengue Prediction,” Engineering, Technology and Applied Science Research, vol. 15, no. 3, pp. 23436–23442, 2025, doi: 10.48084/etasr.10762.

Q.-U.-A. Usmani, Muqtadir Jameel;, Arshad Yousra;, and Ayub Hudaubiya, “Clinical Predictors of Severe Dengue,” Pakistan Journal of Medicine and Dentistry, vol. 14, no. 2, pp. 294–300, 2025, doi: 10.36283/ziun-pjmd14-2/045.

N. Zhao, K. Charland, M. Carabali, M. Giroux, M. Yuan, and C. G. Balaquera, “Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia,” PLoS Neglected Tropical Diseases, vol. 14, no. 9, pp. 1–16, 2020, doi: 10.1371/journal.pntd.0008056.

M. E. Francisco, T. M. Carvajal, and K. Watanabe, “Hybrid Machine Learning Approach to Zero-Inflated Data Improves Accuracy of Dengue Prediction,” PLoS Neglected Tropical Diseases, vol. 2024-Octob, pp. 1–22, 2024, doi: 10.1371/journal.pntd.0012599.

E. Sylvestre, C. Joachim, E. C. Joseph, G. Bouzille, and B. C. Gimenes, “Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review,” PLoS Neglected Tropical Diseases, vol. 16, no. 1, pp. 1–22, 2022, doi: 10.1371/journal.pntd.0010056.

Y. Cheng, R. Cheng, T. Xu, X. Tan, Y. Bai, and J. Yang, “Integrating meteorological data and hybrid intelligent models for dengue fever prediction,” BMC Public Health, vol. 25, no. 1, 2025, doi: 10.1186/s12889-025-22375-2.

D. C. Andrade Girón, W. J. Marín Rodriguez, F. de M. Lioo-Jordan, and J. L. Ausejo Sánchez, “Machine Learning and Deep Learning Models for Dengue Diagnosis Prediction: A Systematic Review,” Informatics, vol. 12, no. 1, pp. 1–20, 2025, doi: 10.3390/informatics12010015.

M. Cabrera, J. Leake, J. Naranjo-Torres, N. Valero, J. C. Cabrera, and A. J. Rodríguez-Morales, “Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review,” Tropical Medicine and Infectious Disease, vol. 7, no. 10, 2022, doi: 10.3390/tropicalmed7100322.

Z. J. Madewell, D. M. Rodriguez, M. B. Thayer, V. Rivera-Amill, G. Paz-Bailey, and L. E. Adams, “Machine learning for predicting severe dengue in Puerto Rico,” Infectious Diseases of Poverty, vol. 14, no. 1, pp. 1–17, 2025, doi: 10.1186/s40249-025-01273-0.

A. Sebastianelli, D. Spiller, R. Carmo, and J. Wheeler, “A reproducible ensemble machine learning approach to forecast dengue outbreaks,” Scientific Reports, vol. 14, no. 1, pp. 1–17, 2024, doi: 10.1038/s41598-024-52796-9.

X. Chen and P. Moraga, “Forecasting dengue across Brazil with LSTM neural networks and SHAP-driven lagged climate and spatial effects,” BMC Public Health, vol. 25, no. 1, 2025, doi: 10.1186/s12889-025-22106-7.

Y. Xiao, G. Soares, and L. Bastos, “Dengue nowcasting in Brazil by combining official surveillance data and Google Trends information,” pp. 1–21, 2025, doi: 10.1371/journal.pntd.0012501.

M. Gong, “A Novel Performance Measure for Machine Learning Classification,” International Journal of Managing Information Technology, vol. 13, no. 1, pp. 11–19, 2021, doi: 10.5121/ijmit.2021.13101.

Additional Files

Published

2026-01-05

How to Cite

[1]
S. Sriyanto, R. A. Aziz, D. A. . Rahayu, Z. Zuriati, M. F. . Abdollah, and I. Irianto, “Comparative Analysis Of Machine Learning Algorithms For Dengue Fever Prediction Based On Clinical And Laboratory Features”, J. Tek. Inform. (JUTIF), vol. 6, no. 6, pp. 5944–5955, Jan. 2026.