Comparison of Transfer Learning Strategies Using MobileNetV2 and ResNet50 for Ecoprint Leaf Classification
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.5266Keywords:
Ecoprint, MobileNetV2, ResNet50, Transfer Learning, types of leavesAbstract
This research focuses on the classification of leaf types used in ecoprint production through the steaming technique by applying transfer learning on two widely recognized convolutional neural network (CNN) architectures, MobileNetV2 and ResNet50. Leaves have diverse applications in various sectors such as medicine, nutrition, and handicrafts. The study utilized a total of 600 leaf images from 15 species were collected from the surrounding environment and divided into 80% training and 20% testing sets. The aim of this study is to classify leaf types suitable for ecoprint quickly and efficiently, based on transfer learning with two CNN architectures, while incorporating fine-tuning. MobileNetV2 was selected for its computational efficiency, while ResNet50 was chosen for its ability to address the vanishing gradient problem and deliver high accuracy. Fine-tuning was employed to optimize model performance. Experimental results demonstrate that both architectures achieved strong performance, with MobileNetV2 reaching 94.12% accuracy and ResNet50 slightly outperforming it at 94.96%. Confusion matrix evaluation further confirmed these results, yielding accuracy, precision, recall, and F1-score values of 0.94, 0.95, 0.95, and 0.94, respectively. These findings highlight ResNet50’s superior performance over MobileNetV2 while affirming the effectiveness of both models in ecoprint leaf classification.
Downloads
References
R. Chusna Tsani, “Teknik Iron Blanket Pada Ecoprint Menggunakan Pewarna Alam,” BAJU Journal of Fashion & Textile Design Unesa, vol. 5, no. 1, pp. 110–116, Oct. 2024, doi: 10.26740/baju.v5n1.p110-116.
A. Cahyana and A. Afrizal, “Optimasi Produksi Ecoprint Fabric Dengan Teknik Rotary Printing,” Acintya Jurnal Penelitian Seni Budaya, vol. 13, no. 2, pp. 109–118, 2022, doi: 10.33153/acy.v13i2.4049.
Purwosiwi Pandansari, Rina Purwanti, and Dessy Ayu Alfianti, “Analysis of Steaming Ecoprint Techniques on Various Fabrics,” Formosa Journal of Social Sciences, vol. 1, no. 4, pp. 411–424, Dec. 2022, doi: 10.55927/fjss.v1i4.2049.
A. Sudrajat, R. D. Apnena, A. H. Rahayu, and M. Iqtait, “Multi-Class Mangrove Classification Using Transfer Learning with MobileNet-V3 on Multi-Organ Images,” Jurnal Teknik Informatika, vol. 6, no. 3, pp. 1631–1642, 2025, doi: 10.52436/1.jutif.2025.6.3.4683.
J. I. Komputer, T. Informasi, T. Jcositte, S. Winiarti, and I. Faisal, “Particle Swarm Optimization Algorithm for Hyperparameter Convolutional Neural Network and Transfer Learning VGG16 Model,” Journal of Computer Science, Information Technology and Telecommunication Engineering, vol. 5, no. 1, pp. 474–480, 2024, doi: 10.30596/jcositte.v5i1.16680.
G. Eka Okta Putra, K. Q. Fredlina, and I. N. Yudi Anggara Wijaya, “Implementasi Transfer Learning Menggunakan Convolutional Neural Network Dalam Klasifikasi Penyu,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, pp. 1077–1082, 2024, doi: 10.36040/jati.v8i1.8929.
Abdul Jalil Rozaqi, A. Sunyoto, and M. R. Arief, “Implementation of Transfer Learning in the Convolutional Neural Network Algorithm for Identification of Potato Leaf Disease,” Procedia of Engineering and Life Science, vol. 1, no. 1, Apr. 2021, doi: 10.21070/pels.v1i1.820.
A. E. Wijaya, W. Swastika, and O. H. Kelana, “Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray,” Sainsbertek Jurnal Ilmiah Sains & Teknologi, vol. 2, no. 1, pp. 10–15, Sep. 2021, doi: 10.33479/sb.v2i1.125.
A. Muis, S. Sunardi, and A. Yudhana, “CNN-based Approach for Enhancing Brain Tumor Image Classification Accuracy,” International Journal of Engineering, vol. 37, no. 5, pp. 984–996, 2024, doi: 10.5829/IJE.2024.37.05B.15.
M. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 4, pp. 218–223, Oct. 2021, doi: 10.14710/jtsiskom.2021.14013.
F. Mashuri and U. Enri, “Implementasi Transfer Learning Dalam Mendeteksi Penyakit Pada Daun Gandum,” Jurnal NUANSA Informatika, vol. 16, no. 1, pp. 66–77, Jan. 2022, doi: 10.25134/nuansa.v16i1.4702.
Fauzan Muhammad, Aniati Murni Arimurthy, and Dina Chahyati, “Transfer learning pada Network VGG16 dan ResNet50,” Indonesia Journal of Computer Science, vol. 12, no. 1, pp. 361–374, Feb. 2023, doi: 10.33022/ijcs.v12i1.3130.
M. R. Maulidi, F. Indriani, A. Farmadi, I. Budiman, and D. Kartini, “Optimizing South Kalimantan Food Image Classification Through CNN Fine-Tuning,” Jurnal Ilmiah Tek. Elektro Komputer dan Informmatik, vol. 10, no. 4, pp. 897–913, 2024, doi: 10.26555/jiteki.v10i4.30325.
M. G. Somoal and A. R. Dzikrillah, “Komparasi MobileNETV2 dengan Kustomisasi Transfer Learning dan Hyperparameter untuk Identifikasi Tumor Otak,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 12, no. 1, pp. 229–240, Feb. 2025, doi: 10.25126/jtiik.2025129582.
M. Khoiruddin and S. Tena, “Fruit and Vegetable Classification using Convolutional Neural Network with MobileNetV2,” Journal of Applied and Research Computer Science and Information Systems, vol. 2, no. 2, pp. 203–210, 2024, doi: 10.61098/jarcis.v2i2.197.
R. K. Shukla and A. K. Tiwari, “Masked Face Recognition Using MobileNet V2 with Transfer Learning,” Computer Systems Science & Engineering, vol. 45, no. 1, pp. 293–309, 2023, doi: 10.32604/csse.2023.027986.
Buyut Khoirul Umri and V. Delica, “Penerapan transfer learning pada convolutional neural networks dalam deteksi covid-19.,” JNANALOKA, pp. 9–17, Sep. 2021, doi: 10.36802/jnanaloka.2021.v2-no2-53-61.
N. L. Chusna and A. Khumaidi, “Comparison of Convolutional Neural Network Models for Feasibility of Selling Orchids,” Ilkom Jurnal Ilmiah, vol. 16, no. 3, pp. 296–304, Dec. 2024, doi: 10.33096/ilkom.v16i3.2006.296-304.
V. K. Isuyama and B. D. C. Albertini, “Comparison of Convolutional Neural Network Models for Mobile Devices,” in Anais do XX Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance 2021), Sociedade Brasileira de Computação - SBC, Jul. 2021, pp. 73–83. doi: 10.5753/wperformance.2021.15724.
A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice Disease Recognition Using Transfer Learning Xception Convolutional Neural Network,” Jurnal Teknik Informatika, vol. 4, no. 6, pp. 1535–1540, 2023, doi: 10.52436/1.jutif.2023.4.6.1529.
E. I. Haksoro and A. Setiawan, “Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network,” Jurnal ELTIKOM, vol. 5, no. 2, pp. 81–91, 2021, doi: 10.31961/eltikom.v5i2.428.
S. Saifullah et al., “Nondestructive Chicken Egg Fertility Detection Using CNN-Transfer Learning Algorithms,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 3, pp. 854–871, Sep. 2023, doi: 10.26555/jiteki.v9i3.26722.
S. Aras, A. Setyanto, and Rismayani, “Deep Learning Untuk Klasifikasi Motif Batik Papua Menggunakan EfficientNet dan Trasnfer Learning,” Insect (Informatics Security Jurnal Teknik Informatika, vol. 8, no. 1, pp. 11–20, 2022, doi: 10.33506/insect.v8i1.1865.
Y. I. Sulistya, E. T. Br Bangun, and D. A. Tyas, “CNN Ensemble Learning Method for Transfer learning: A Review,” Ilkom Jurnal Ilmmiah, vol. 15, no. 1, pp. 45–63, Apr. 2023, doi: 10.33096/ilkom.v15i1.1541.45-63.
N. W. Kencana, R. Umar, and Murinto, “Implementasi Transfer Learning Untuk Klasifikasi Jenis Ras Ayam Menggunakan Arsitektur MobileNetV2,” Jurnal Informatika Polinema, vol. 11, no. 2, pp. 147–154, Feb. 2025, doi: 10.33795/jip.v11i2.6469.
R. Faturrahman, Y. S. Haryani, and S. Hadiyoso, “Klasifikasi Jajanan Tradisional Indonesia berbasis Deep Learning dan Metode Transfer Learning,” ELKOMIKA Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika., vol. 11, no. 4, p. 945, 2023, doi: 10.26760/elkomika.v11i4.945.
A. Peryanto, A. Yudhana, and R. Umar, “Convolutional Neural Network and Support Vector Machine in Classification of Flower Images,” Khazanah Informatika. Jurnal Ilmu Komputer dan Informatika, vol. 8, no. 1, pp. 1–7, 2022, doi: 10.23917/khif.v8i1.15531.
Herman, M. Akbar, H. Nasir, Herdianti, H. Azis, and L. N. Hayati, “Comparative Performance of ResNet Architectures for Toraja Carving Image Classification with Data Augmentation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 9, no. 4, pp. 737–744, Aug. 2025, doi: 10.29207/resti.v9i4.6181.
B. A. Sadewa and Y. Yamasari, “Implementasi Deep Transfer Learning untuk Klasifikasi Nominal Uang Kertas Rupiah,” Journal of Informatics and Computer Science, vol. 5, no. 04, pp. 543–551, 2024, doi: 10.26740/jinacs.v5n04.p543-551.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siti Hajar, Murinto, Anton Yudhana

This work is licensed under a Creative Commons Attribution 4.0 International License.