Designing AI - IoE Precision Farming to Create Sustainable Eco-Friendly Hydroponic Greenhouses

Authors

  • Murti Wisnu Ragil Sastyawan Industrial Engineering, Universitas Jenderal Soedirman, Indonesia
  • Muhammad Ihsan Fawzi Informatics, Universitas Jenderal Soedirman, Indonesia
  • Radita Dwi Putera Industrial Engineering, Universitas Jenderal Soedirman, Indonesia
  • Zakiyyan Zain Alkaf Industrial Engineering, Universitas Jenderal Soedirman, Indonesia
  • Muhammad Syhamsudin Electrical Engineering, Universitas Jenderal Soedirman, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.5.5260

Keywords:

Eco-friendly greenhouse, Internet of Everything, Precision farming, Smart hydroponic, Sustainable agriculture, Wireless sensor networks

Abstract

Conventional greenhouses, while boosting crop yields, face critical sustainability challenges due to high energy consumption and resource inefficiency, particularly in developing nations where manual management prevails. This research addresses these limitations by designing a comprehensive AI-IoE system architecture to create a smart, resource-efficient, and sustainable operational model for eco-friendly greenhouses. The development methodology involved a systematic process of requirements analysis, integrated hardware and software design, prototype assembly, and functional testing. The system utilizes an ESP32 microcontroller as its central control unit, integrating a suite of six sensors comprising light intensity, temperature, humidity, pH, Total Dissolved Solids (TDS), and CO₂ to monitor critical environmental parameters in real-time. This integration utilizes the extensive dataset for AI based predictive analysis, enabling the intelligent forecasting of environmental trends and proactive resource management. The research resulted in a complete system blueprint, including a detailed electronic circuit design, a production-ready Printed Circuit Board (PCB) layout, defined operational control logic, and an intuitive web-based dashboard for remote monitoring and management. This integrated AI-IoE architecture provides a tangible solution that surpasses previous fragmented approaches by offering holistic environmental control. The findings present a significant contribution to precision farming, establishing a scalable and efficient framework to enhance greenhouse productivity and ecological sustainability.

Downloads

Download data is not yet available.

References

K. Appiah, J. Du, and J. Poku, “Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies,” Environ. Sci. Pollut. Res., vol. 25, no. 25, pp. 24764–24777, Sept. 2018, doi: 10.1007/s11356-018-2523-z.

J. S. Kikstra et al., “The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures,” Geosci. Model Dev., vol. 15, no. 24, pp. 9075–9109, Dec. 2022, doi: 10.5194/gmd-15-9075-2022.

N. Istudor et al., “Agriculture and the Twofold Relationship between Food Security and Climate Change. Evidence from Romania,” www.amfiteatrueconomic.ro, vol. 21, no. 51, p. 285, May 2019, doi: 10.24818/EA/2019/51/285.

G. P. A. Bot, “Selection Processes of (Changes in) Covered Cropping Patterns,” in Applied Agrometeorology, K. Stigter, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 829–834. doi: 10.1007/978-3-540-74698-0_97.

M. Farvardin, M. Taki, S. Gorjian, E. Shabani, and J. C. Sosa-Savedra, “Assessing the Physical and Environmental Aspects of Greenhouse Cultivation: A Comprehensive Review of Conventional and Hydroponic Methods,” Sustainability, vol. 16, no. 3, p. 1273, Feb. 2024, doi: 10.3390/su16031273.

N. S. Gruda and H. Fatnassi, “Greenhouse vegetable production from the point of view of climate change,” Acta Hortic., no. 1426, pp. 503–510, Apr. 2025, doi: 10.17660/ActaHortic.2025.1426.69.

A. Badji, A. Benseddik, H. Bensaha, A. Boukhelifa, and I. Hasrane, “Design, technology, and management of greenhouse: A review,” J. Clean. Prod., vol. 373, p. 133753, Nov. 2022, doi: 10.1016/j.jclepro.2022.133753.

A. Banakar, M. Montazeri, B. Ghobadian, H. Pasdarshahri, and F. Kamrani, “Energy analysis and assessing heating and cooling demands of closed greenhouse in Iran,” Therm. Sci. Eng. Prog., vol. 25, p. 101042, Oct. 2021, doi: 10.1016/j.tsep.2021.101042.

G. Gugliuzza, A. Giovino, and G. Pachino, “First observation on tomato plant growth in an innovative soilless sustainable cultivation system in south of Italy,” Acta Hortic., no. 1377, pp. 687–694, Oct. 2023, doi: 10.17660/ActaHortic.2023.1377.84.

R. M. Rees, “Air: Greenhouse gases from agriculture,” in Reference Module in Food Science, Elsevier, 2025, p. B9780443159763000349. doi: 10.1016/B978-0-443-15976-3.00034-9.

H. Yuliandoko, F. Panduardi, and A. Holik, “Monitoring System of Greenhouse Based on WSN and Auto Flushing Sensor Mechanism,” in 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia: IEEE, Dec. 2022, pp. 234–238. doi: 10.1109/ICITISEE57756.2022.10057929.

M. Miraz, M. Ali, P. Excell, and R. Picking, “Internet of Nano-Things, Things and Everything: Future Growth Trends,” Future Internet, vol. 10, no. 8, p. 68, July 2018, doi: 10.3390/fi10080068.

W. Rafique and J. Qadir, “Internet of everything meets the metaverse: Bridging physical and virtual worlds with blockchain,” Comput. Sci. Rev., vol. 54, p. 100678, Nov. 2024, doi: 10.1016/j.cosrev.2024.100678.

G. Sciddurlo, P. Camarda, D. Striccoli, I. Cianci, G. Piro, and G. Boggia, “Markov chain-based analytical model supporting service provisioning and network design in the Social Internet of Everything,” Comput. Netw., vol. 258, p. 111040, Feb. 2025, doi: 10.1016/j.comnet.2025.111040.

K. Zhang, M. Li, B. Zhang, P. Chu, and G. Che, “High-accurate range acquisition for LFMCW radar with optimized maximum likelihood estimation towards Internet of Everything,” Phys. Commun., vol. 70, p. 102646, June 2025, doi: 10.1016/j.phycom.2025.102646.

J. Devare and N. Hajare, “A Survey on IoT Based Agricultural Crop Growth Monitoring and Quality Control,” in 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India: IEEE, July 2019, pp. 1624–1630. doi: 10.1109/ICCES45898.2019.9002533.

J. Yu et al., “Sensing technology for greenhouse tomato production: A systematic review,” Smart Agric. Technol., vol. 11, p. 101020, Aug. 2025, doi: 10.1016/j.atech.2025.101020.

J. N. K. Wah, “The Role of AI in Transforming Agriculture: Toward Sustainable Growth in an Era of Climate Change,” Feb. 2025, doi: 10.5281/ZENODO.15587933.

I. Arakelyan, A. Wreford, and D. Moran, “Can agriculture be climate smart?,” in Building a Climate Resilient Economy and Society, K. N. Ninan and M. Inoue, Eds., Edward Elgar Publishing, 2017. doi: 10.4337/9781785368455.00019.

M. Pathak, S. Patel, and S. Some, “Climate change mitigation and Sustainable Development Goals: Evidence and research gaps,” PLOS Clim., vol. 3, no. 3, p. e0000366, Mar. 2024, doi: 10.1371/journal.pclm.0000366.

K. R. Sooryamol, S. Kumar, A. David Raj, and M. Sankar, “Smart Farming and Carbon Sequestration to Combat the Climate Crisis,” in Climate Crisis: Adaptive Approaches and Sustainability, U. Chatterjee, R. Shaw, S. Kumar, A. D. Raj, and S. Das, Eds., in Sustainable Development Goals Series. , Cham: Springer Nature Switzerland, 2023, pp. 293–306. doi: 10.1007/978-3-031-44397-8_16.

T. Nhat Lam Duyen, R. F. Rañola, B. O. Sander, R. Wassmann, N. D. Tien, and N. N. K. Ngoc, “A comparative analysis of gender and youth issues in rice production in North, Central, and South Vietnam,” Clim. Dev., vol. 13, no. 2, pp. 115–127, Feb. 2021, doi: 10.1080/17565529.2020.1734771.

A. Flammini et al., “Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970–2019,” Earth Syst. Sci. Data, vol. 14, no. 2, pp. 811–821, Feb. 2022, doi: 10.5194/essd-14-811-2022.

N. Ben-Lhachemi, M. Benchrifa, S. Nasrdine, J. Mabrouki, M. Slaoui, and M. A. Azrour, “Effect of IoT Integration in Agricultural Greenhouses,” in Technical and Technological Solutions Towards a Sustainable Society and Circular Economy, J. Mabrouki and A. Mourade, Eds., in World Sustainability Series. , Cham: Springer Nature Switzerland, 2024, pp. 435–445. doi: 10.1007/978-3-031-56292-1_35.

A. Lachheb, R. Marouani, C. Mahamat, S. Skouri, and S. Bouadila, “Fostering Sustainability through the Integration of Renewable Energy in an Agricultural Hydroponic Greenhouse,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 2, pp. 13398–13407, Apr. 2024, doi: 10.48084/etasr.6939.

J. Contreras-Castillo, J. A. Guerrero-Ibañez, P. C. Santana-Mancilla, and L. Anido-Rifón, “SAgric-IoT: An IoT-Based Platform and Deep Learning for Greenhouse Monitoring,” Appl. Sci., vol. 13, no. 3, p. 1961, Feb. 2023, doi: 10.3390/app13031961.

C. A. Hernández-Morales, J. M. Luna-Rivera, and R. Perez-Jimenez, “Design and deployment of a practical IoT-based monitoring system for protected cultivations,” Comput. Commun., vol. 186, pp. 51–64, Mar. 2022, doi: 10.1016/j.comcom.2022.01.009.

B. Huang, “Research on the Application of Internet of Things Monitoring System in Greenhouse Flowers,” in 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin City, China: IEEE, June 2021, pp. 1856–1859. doi: 10.1109/IWCMC51323.2021.9498699.

K. Tatas et al., “Reliable IoT-Based Monitoring and Control of Hydroponic Systems,” Technologies, vol. 10, no. 1, p. 26, Feb. 2022, doi: 10.3390/technologies10010026.

M. Lee, H. Kim, and H. Yoe, “ICBM-Based Smart Farm Environment Management System,” in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, vol. 790, R. Lee, Ed., in Studies in Computational Intelligence, vol. 790. , Cham: Springer International Publishing, 2019, pp. 42–56. doi: 10.1007/978-3-319-98367-7_4.

J. Nemčík, E. Mako, and T. Krajčovič, “Smart Indoor Greenhouse,” in 7th Conference on the Engineering of Computer Based Systems, Novi Sad Serbia: ACM, May 2021, pp. 1–2. doi: 10.1145/3459960.3461558.

C. Maraveas, D. Piromalis, K. G. Arvanitis, T. Bartzanas, and D. Loukatos, “Applications of IoT for optimized greenhouse environment and resources management,” Comput. Electron. Agric., vol. 198, p. 106993, July 2022, doi: 10.1016/j.compag.2022.106993.

H. Yin, Y. Cao, B. Marelli, X. Zeng, A. J. Mason, and C. Cao, “Soil Sensors and Plant Wearables for Smart and Precision Agriculture,” Adv. Mater., vol. 33, no. 20, p. 2007764, May 2021, doi: 10.1002/adma.202007764.

M. Aarif K. O., A. Alam, and Y. Hotak, “Smart Sensor Technologies Shaping the Future of Precision Agriculture: Recent Advances and Future Outlooks,” J. Sens., vol. 2025, no. 1, p. 2460098, Jan. 2025, doi: 10.1155/js/2460098.

A. Abu Sneineh and A. A. A. Shabaneh, “Design of a smart hydroponics monitoring system using an ESP32 microcontroller and the Internet of Things,” MethodsX, vol. 11, p. 102401, Dec. 2023, doi: 10.1016/j.mex.2023.102401.

M. Niswar, “Design and Implementation of an Automated IndoorHydroponic Farming System based on the Internet of Things,” Int. J. Comput. Digit. Syst., vol. 15, no. 1, pp. 337–346, Jan. 2024, doi: 10.12785/ijcds/150126.

J. Seetaram, A. Bhavya, C. Tarun, and V. Sameera, “Internet of Things (IoT) Based Greenhouse Monitoring and Controlling System Using ESP-32,” IJARCCE, vol. 13, no. 6, May 2024, doi: 10.17148/IJARCCE.2024.13605.

H. A. Méndez-Guzmán et al., “IoT-Based Monitoring System Applied to Aeroponics Greenhouse,” Sensors, vol. 22, no. 15, p. 5646, July 2022, doi: 10.3390/s22155646.

Additional Files

Published

2025-10-23

How to Cite

[1]
M. W. R. Sastyawan, M. I. . Fawzi, R. D. . Putera, Z. Z. . Alkaf, and M. . Syhamsudin, “Designing AI - IoE Precision Farming to Create Sustainable Eco-Friendly Hydroponic Greenhouses”, J. Tek. Inform. (JUTIF), vol. 6, no. 5, pp. 3983–3993, Oct. 2025.