Automated Property Valuation with Multi-Hazard Risk: Jakarta Metropolitan Area Study
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.5236Keywords:
Adaptive Lasso, Disaster Risk Assessment, Feature Engineering, Machine Learning, Property ValuationAbstract
This study crafts a machine learning framework that systematically integrates multi-hazard disaster risk assessments into automated property valuation for the Jakarta Metropolitan Area. The framework addresses 25–30% MAPE typically observed in disaster-prone regions, providing more reliable valuation results. We made 114 prediction features from 42 input variables by using 14,284 property data from Indonesian markets, physical risk data from the Think Hazard platform, and socio-economic data from Central Bureau of Statistics. Elastic Net model performed superior compared to other models which had R² = 0.7922 and a MAPE of 28.27%. We found that some disaster risks had unexpected beneficial effects on property prices. We expected that risks related to the earth (+40.5%) and water (+19.2%) would have positive effects, while risks related to the weather (-66.9%) would have negative effects. These conflicting results suggest that in complex urban markets, the quality of infrastructure, location premiums, and differences in risk perception may outweigh simple risk penalties. The idea gives realistic ideas for property valuation that takes risks into account, but it also points out big problems with how the market judges how likely a disaster is to happen.
Downloads
References
A. Reimuth, M. Hagenlocher, L. E. Yang, A. Katzschner, M. Harb, and M. Garschagen, “Urban growth modeling for the assessment of future climate and disaster risks: approaches, gaps and needs,” Jan. 01, 2024, Institute of Physics. doi: 10.1088/1748-9326/ad1082.
O. Demirci, “Automated Valuation Models (AVMs): Machine Learning, namely Mass (Advanced) Valuation Methods and Algorithms,” London, Feb. 2021. doi: 10.13140/RG.2.2.12649.42080.
T. H. Root, T. J. Strader, Y.-H. Huang, and by H. Thomas Root, “A Review of Machine Learning Approaches for Real Estate Valuation,” Real Estate Valuat. J. Midwest Assoc. Inf. Syst. |, vol. 2023, no. 2, 2023, doi: 10.17705/3jmwa.000082.
K. de Koning, T. Filatova, and O. Bin, “Improved Methods for Predicting Property Prices in Hazard Prone Dynamic Markets,” Environ. Resour. Econ., vol. 69, no. 2, pp. 247–263, Feb. 2018, doi: 10.1007/s10640-016-0076-5.
I. Muzahem Alsahan and Z. Ibraheem AlZaidan, “Unleashing the Power of Artificial Intelligence in Real Estate Valuation: Opportunities and Challenges Ahead,” J. Knowl. Learn. Sci. Technol. ISSN 2959-6386, vol. 3, no. 2, pp. 1–10, Feb. 2024, doi: 10.60087/jklst.vol3.n2.p10.
S. Aydinli, R. Aydoğdu, and O. Genç, “Valuation of Residential Real Estate Using Machine Learning Techniques,” in EGE 12th International Conference on Applied Sciences, Izmir: Academy Global Publishing House, Dec. 2024, pp. 798–806. [Online]. Available: https://www.researchgate.net/publication/387692423
M. Fuady, R. Munadi, and M. A. K. Fuady, “Disaster mitigation in Indonesia: between plans and reality,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1087, no. 1, p. 012011, 2021, doi: 10.1088/1757-899x/1087/1/012011.
R. Abdillah and T. Rasyif, “Probabilistic Analysis of Tsunami Caused by The Java Megathrust Active Fault: A Case Study of Jakarta, Indonesia,” in the International Conference on Sustainable Engineering, Infrastructure and Development, Jakarta: European Alliance for Innovation n.o., Dec. 2023. doi: 10.4108/eai.23-11-2022.2341755.
A. Wiyonoa, S. Alidrusb, and H. Faustc, “The Impact of Disasters on Urban Structure: A Study of North Lombok, West Nusa Tenggara, Indonesia,” J. Ecohumanism, vol. 3, no. 8, Dec. 2024, doi: 10.62754/joe.v3i8.5105.
R. Damanik et al., “New assessment of the probabilistic seismic hazard analysis for the greater Jakarta area, Indonesia,” Geomatics, Nat. Hazards Risk, vol. 14, no. 1, Apr. 2023, doi: 10.1080/19475705.2023.2202805.
R. Handika, J. Widodo, and A. E. Pravitasari, “Combined Land Subsidence Analysis in Jakarta Based on Ps-InSAR and MICMAC,” J. Teknol. Lingkung., vol. 25, no. 1, pp. 137–145, Jan. 2024, doi: https://doi.org/10.55981/jtl.2024.1125.
H. Z. Abidin, H. Andreas, I. Gumilar, Y. Fukuda, Y. E. Pohan, and T. Deguchi, “Land subsidence of Jakarta (Indonesia) and its relation with urban development,” Nat. Hazards, vol. 59, no. 3, pp. 1753–1771, Dec. 2011, doi: 10.1007/s11069-011-9866-9.
A. Wicaksono and H. Herdiansyah, “The impact analysis of flood disaster in DKI jakarta: Prevention and control perspective,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1742-6596/1339/1/012092.
A. Hastono, E. Anggraheni, A. Prasetyo, and D. Sutjiningsih, “Recommendations on Flood Management at Cengkareng Drain Estuary in Enhancing Estuary Resilience to Compound Hazard,” CSID J. Infrastruct. Dev., vol. 6, no. 2, pp. 154–168, Dec. 2023, doi: 10.7454/jid.v6.i2.1116.
S. Widiyantoro et al., “Implications for fault locking south of Jakarta from an investigation of seismic activity along the Baribis fault, northwestern Java, Indonesia,” Sci. Rep., vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-13896-6.
T. A. Kurniawan et al., “Social dimensions of climate-induced flooding in Jakarta (Indonesia): The role of non-point source pollution,” Water Environ. Res., vol. 96, no. 9, Sep. 2024, doi: 10.1002/wer.11129.
R. P. Yonandi and M. Halim, “ARSITEKTUR ADAPTIF YANG MENJUNJUNG TINGGI KEMANUSIAAN DALAM BANGUNAN SIAP HUNI BAGI PENGUNGSI BANJIR,” J. Sains, Teknol. Urban, Perancangan, Arsit., vol. 6, no. 1, pp. 37–48, Apr. 2024, doi: 10.24912/stupa.v6i1.27447.
C. . Nguyễn, A. Chidthaisong, R. Kaewthongrach, and W. Marome, “Urban Thermal Environment Under Urban Expansion and Climate Change: A Regional Perspective from Southeast Asian Big Cities,” in Climate Change and Cooling Cities, Singapore: Springer, 2023, pp. 151–167. doi: https://doi.org/10.1007/978-981-99-3675-5_9.
Ma’Muri, I. Santoso, A. Sudiro, and S. Maryanto, “Assessing Vulnerability in the Face of Multiple Hazards: Insights from a Literature Review on Indonesia’s Disaster Risk Management,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2025. doi: 10.1088/1755-1315/1486/1/012041.
M. A. Berawi, L. Aprianti, G. Saroji, M. Sari, P. Miraj, and A. A. Kim, “Land value capture modeling in residential area using big data approach method,” Eng. J., vol. 24, no. 4, pp. 249–259, 2020, doi: 10.4186/ej.2020.24.4.249.
P. Jafary, D. Shojaei, A. Rajabifard, and T. Ngo, “A Framework to Integrate BIM with Artificial Intelligence and Machine Learning-Based Property Valuation Methods,” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus Publications, Oct. 2022, pp. 129–136. doi: 10.5194/isprs-annals-X-4-W2-2022-129-2022.
H. Wu et al., “Influence factors and regression model of urban housing prices based on internet open access data,” Sustain., vol. 10, no. 5, May 2018, doi: 10.3390/su10051676.
K. V. Mathotaarachchi, R. Hasan, and S. Mahmood, “Advanced Machine Learning Techniques for Predictive Modeling of Property Prices,” Inf., vol. 15, no. 6, Jun. 2024, doi: 10.3390/info15060295.
Q. Gao, V. Shi, C. Pettit, and H. Han, “Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia,” Land use policy, vol. 123, Dec. 2022, doi: 10.1016/j.landusepol.2022.106409.
L. Deng and X. Zhang, “Boosting the accuracy of property valuation with ensemble learning and explainable artificial intelligence: The case of Hong Kong,” Ann. Reg. Sci., vol. 74, no. 1, Mar. 2025, doi: 10.1007/s00168-025-01365-7.
S. Yousefi, H. R. Pourghasemi, S. N. Emami, S. Pouyan, S. Eskandari, and J. P. Tiefenbacher, “A machine learning framework for multi-hazards modeling and mapping in a mountainous area,” Sci. Rep., vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-69233-2.
V. Linardos, M. Drakaki, P. Tzionas, and Y. L. Karnavas, “Machine Learning in Disaster Management: Recent Developments in Methods and Applications,” Jun. 01, 2022, MDPI. doi: 10.3390/make4020020.
R. Paulik et al., “RiskScape: a flexible multi-hazard risk modelling engine,” Nat. Hazards, vol. 119, no. 2, pp. 1073–1090, Nov. 2023, doi: 10.1007/s11069-022-05593-4.
T. Zhao et al., “Artificial intelligence for geoscience: Progress, challenges, and perspectives,” Sep. 09, 2024, Cell Press. doi: 10.1016/j.xinn.2024.100691.
L. Padilla, S. Dryhurst, H. Hosseinpour, and A. Kruczkiewicz, “Multiple Hazard Uncertainty Visualization Challenges and Paths Forward,” Front. Psychol., vol. 12, Jul. 2021, doi: 10.3389/fpsyg.2021.579207.
G. Droj, A. Kwartnik-Pruc, and L. Droj, “A Comprehensive Overview Regarding the Impact of GIS on Property Valuation,” Jun. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ijgi13060175.
P. Jafary, D. Shojaei, A. Rajabifard, and T. Ngo, “Automating property valuation at the macro scale of suburban level: A multi-step method based on spatial imputation techniques, machine learning and deep learning,” Habitat Int., vol. 148, Jun. 2024, doi: 10.1016/j.habitatint.2024.103075.
M. McCord, D. Lo, P. Davis, J. McCord, L. Hermans, and P. Bidanset, “Applying the Geostatistical Eigenvector Spatial Filter Approach into Regularized Regression for Improving Prediction Accuracy for Mass Appraisal,” Appl. Sci., vol. 12, no. 20, Oct. 2022, doi: 10.3390/app122010660.
W. J. W. Botzen, O. Deschenes, and M. Sanders, “The economic impacts of natural disasters: A review of models and empirical studies,” Aug. 01, 2019, Oxford University Press. doi: 10.1093/reep/rez004.
A. Ota and M. Uto, “Variation in Property Valuations Conducted by Artificial Intelligence in Japan: A Viewpoint of User’s Perspective,” Real Estate, vol. 1, no. 3, pp. 252–266, Nov. 2024, doi: 10.3390/realestate1030013.
M. Neuger and C. Susilawati, “Urban Megaprojects from Isolation to Integration: A Property Market Perspective on Flagship Buildings,” Buildings, vol. 15, no. 7, Apr. 2025, doi: 10.3390/buildings15071156.
O. Bin and C. E. Landry, “Changes in implicit flood risk premiums: Empirical evidence from the housing market,” J. Environ. Econ. Manage., vol. 65, no. 3, pp. 361–376, May 2013, doi: 10.1016/j.jeem.2012.12.002.
N. Mikawa, “Impact of the 2011 earthquake on the real estate market in Tokyo,” Japan World Econ., vol. 73, Mar. 2025, doi: 10.1016/j.japwor.2025.101298.
A. Bernstein, M. T. Gustafson, and R. Lewis, “Disaster on the horizon: The price effect of sea level rise,” J. financ. econ., vol. 134, no. 2, pp. 253–272, Nov. 2019, doi: 10.1016/j.jfineco.2019.03.013.
K. S. Cheung, J. T. K. Chan, S. Li, and C. Y. Yiu, “Anchoring and Asymmetric Information in the Real Estate Market: A Machine Learning Approach,” J. Risk Financ. Manag., vol. 14, no. 9, Sep. 2021, doi: 10.3390/jrfm14090423.
G. Cremen, C. Galasso, and J. McCloskey, “Modelling and quantifying tomorrow’s risks from natural hazards,” Apr. 15, 2022, Elsevier B.V. doi: 10.1016/j.scitotenv.2021.152552.
T. Weerasinghe, D. Amaratunga, and R. Haigh, “Appraising investments in Disaster Risk Reduction (DRR): A systematic literature review,” Apr. 01, 2025, Elsevier Ltd. doi: 10.1016/j.pdisas.2025.100438.
J. Carroll and S. Hughes, “Using a video camera to measure the radius of the Earth,” Phys. Educ., vol. 48, no. 6, pp. 731–735, 2013, doi: 10.1088/0031-9120/48/6/731.
Y. R. Fan, L. Yu, X. Shi, and Q. Y. Duan, “Tracing Uncertainty Contributors in the Multi-Hazard Risk Analysis for Compound Extremes,” Earth’s Futur., vol. 9, no. 12, Dec. 2021, doi: 10.1029/2021EF002280.
H. Zou and H. H. Zhang, “On the adaptive elastic-net with a diverging number of parameters,” Ann. Stat., vol. 37, no. 4, pp. 1733–1751, Aug. 2009, doi: 10.1214/08-AOS625.
A. Rahayu and I. Husein, “Comparison of Lasso And Adaptive Lasso Methods in Identifying Variables Affecting Population Expenditure,” Sinkron, vol. 8, no. 3, pp. 1435–1445, Jul. 2023, doi: 10.33395/sinkron.v8i3.12558.
H. Zou, “The adaptive lasso and its oracle properties,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1418–1429, Dec. 2006, doi: 10.1198/016214506000000735.
J. Sánchez García and S. Cruz Rambaud, “Machine Learning Regularization Methods in High-Dimensional Monetary and Financial VARs,” Mathematics, vol. 10, no. 6, Mar. 2022, doi: 10.3390/math10060877.
Q. Zhang, “Housing Price Prediction Based on Multiple Linear Regression,” Sci. Program., vol. 2021, 2021, doi: 10.1155/2021/7678931.
R. Zhang and T. Zhang, “The AH premium: A tale of ‘siamese twin’ stocks,” J. Empir. Financ., vol. 81, Mar. 2025, doi: 10.1016/j.jempfin.2025.101599.
S. Sisman and A. C. Aydinoglu, “Improving performance of mass real estate valuation through application of the dataset optimization and Spatially Constrained Multivariate Clustering Analysis,” Land use policy, vol. 119, Aug. 2022, doi: 10.1016/j.landusepol.2022.106167.
A. Soltani, M. Heydari, F. Aghaei, and C. J. Pettit, “Housing price prediction incorporating spatio-temporal dependency into machine learning algorithms,” Cities, vol. 131, Dec. 2022, doi: 10.1016/j.cities.2022.103941.
J. Hernandez et al., “Predictive Analysis of Local House Prices: Leveraging MachineLearning for Real Estate Valuation,” SMU Data Sci. Rev., vol. 8, no. 1, p. 12, 2024, Accessed: Aug. 30, 2025. [Online]. Available: https://scholar.smu.edu/datasciencereview/vol8/iss1/12
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fachrurrozi, Hanna Arini Parhusip, Suryasatriya Trihandaru

This work is licensed under a Creative Commons Attribution 4.0 International License.