Optimizing Alternating Least Squares for Recommender Systems Using Particle Swarm Optimization

Authors

  • Fiddin Yusfida A'la Applied Data Science and AI Research Group, Universitas Sebelas Maret, Indonesia
  • Nurul Firdaus Applied Data Science and AI Research Group, Universitas Sebelas Maret, Indonesia
  • Andy Supriyadi Applied Data Science and AI Research Group, Universitas Sebelas Maret, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.4.5154

Keywords:

ALS, MAE, MovieLens, PSO, recommender system, RMSE

Abstract

Recommender systems play a crucial role in various digital platforms by assisting users in discovering relevant items. The research problem addressed in this study is the limited predictive accuracy of ALS-based recommender systems due to suboptimal parameter selection. This study explores how Particle Swarm Optimization (PSO) can be leveraged for parameter optimization to address this limitation. The dataset used is MovieLens 1M, which contains over one million user ratings for thousands of movies. The research process includes data preprocessing, data splitting, model training, and evaluation using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as the primary metrics. The evaluation results indicate a significant improvement in model performance after optimization, with RMSE decreasing from 0.895 to 0.860 and MAE from 0.704 to 0.680. These findings demonstrate that optimization algorithms can effectively improve the prediction accuracy of recommendation systems. This research contributes to the application of swarm-based optimization techniques in enhancing matrix factorization-based recommender systems.

Downloads

Download data is not yet available.

References

S. Gosh, N. Nahar, M. A. Wahab, M. Biswas, M. S. Hossain, and K. Andersson, “Recommendation System for E-commerce Using Alternating Least Squares (ALS) on Apache Spark,” Springer, 2021, pp. 880–893. doi: 10.1007/978-3-030-68154-8_75.

W.-E. Kong, T.-E. Tai, P. Naveen, and H. A. Santoso, “Performance Evaluation on E-Commerce Recommender System based on KNN, SVD, CoClustering and Ensemble Approaches,” Journal of Informatics and Web Engineering, vol. 3, no. 3, pp. 63–76, Oct. 2024, doi: 10.33093/jiwe.2024.3.3.4.

F. T. Abdul Hussien, A. M. S. Rahma, and H. B. Abdul Wahab, “Recommendation Systems For E-commerce Systems An Overview,” J Phys Conf Ser, vol. 1897, no. 1, p. 012024, May 2021, doi: 10.1088/1742-6596/1897/1/012024.

M. O. Puspitaningtyas, K. Puspita, Y. Alkhalifi, and Y. A. Wardani, “Implementation of Support Vector Machine, Particle Swarm Optimization, And Naïve Bayes Algorithms in Sentiment Analysis of Product Reviews: A Case Study of e-Commerce Lazada,” Jurnal Riset Informatika, vol. 7, no. 2, pp. 30–37, Mar. 2025, doi: 10.34288/jri.v7i2.362.

M. Bourreau and G. Gaudin, “Streaming platform and strategic recommendation bias,” J Econ Manag Strategy, vol. 31, no. 1, pp. 25–47, Feb. 2022, doi: 10.1111/jems.12452.

N. J. Nahar, L. K. Vishwamitra, and D. Sukheja, “Collaborative Learning based Recommendation System for Content Streaming Platform using Non-Negative Matrix Factorization Clustering,” Procedia Comput Sci, vol. 230, pp. 427–435, 2023, doi: 10.1016/j.procs.2023.12.098.

J. M. Azri Saputra, L. M. Huizen, and D. B. Arianto, “Sistem Rekomendasi Film pada Platform Streaming Menggunakan Metode Content-Based Filtering,” Jurnal Transformatika, vol. 22, no. 1, pp. 10–21, Jul. 2024, doi: 10.26623/transformatika.v22i1.7041.

Y. Shin, H.-S. Choi, Y. Nam, H. Cho, and E. Lee, “Particle Swarm Optimization Video Streaming Service in Vehicular Ad-Hoc Networks,” IEEE Access, vol. 10, pp. 102710–102723, 2022, doi: 10.1109/ACCESS.2022.3206786.

J. Xu, “Analysis of Social Media Algorithm Recommendation System,” Studies in Social Science & Humanities, vol. 1, no. 3, Oct. 2022, doi: 10.56397/SSSH.2022.10.06.

Y. A. Bekeneva and T. U. Eze, “Improved Social Network User Recommendation System—The Machine Learning Approach,” in INTELS’22, Basel Switzerland: MDPI, Jun. 2023, p. 13. doi: 10.3390/engproc2023033013.

A. Anandhan, M. A. Ismail, L. Shuib, W. S. N. Aiza, and M. M. Elaish, “Social Media Recommender Systems (SMRS): A Bibliometric Analysis Study 2000–2021,” IEEE Access, vol. 10, pp. 35479–35497, 2022, doi: 10.1109/ACCESS.2022.3161497.

M. Qi, J. Zhao, and Y. Feng, “An optimized public opinion communication system in social media networks based on K-means cluster analysis,” Heliyon, vol. 10, no. 24, p. e40033, Dec. 2024, doi: 10.1016/j.heliyon.2024.e40033.

G. Liu and X. Wu, “Using Collaborative Filtering Algorithms Combined with Doc2Vec for Movie Recommendation,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, Mar. 2019, pp. 1461–1464. doi: 10.1109/ITNEC.2019.8729076.

K. V K and S. Murugesan, “An Effective Book Recommendation System using Weighted Alternating Least Square (WALS) Approach,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 4, 2024, doi: 10.14569/IJACSA.2024.0150463.

H. A. Adyatma and Z. K. A. Baizal, “Book Recommender System Using Matrix Factorization with Alternating Least Square Method,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1286–1292, Jul. 2023, doi: 10.47065/josh.v4i4.3816.

H. S. Salem, M. A. Mead, and G. S. El-Taweel, “Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis,” Journal of Computer and Communications, vol. 12, no. 03, pp. 160–183, 2024, doi: 10.4236/jcc.2024.123010.

M. Munsarif, M. Sam’an, and A. Fahrezi, “Convolution neural network hyperparameter optimization using modified particle swarm optimization,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 2, pp. 1268–1275, Apr. 2024, doi: 10.11591/eei.v13i2.6112.

T.-Y. Hong and C.-C. Chen, “Hyperparameter optimization for convolutional neural network by opposite-based particle swarm optimization and an empirical study of photomask defect classification,” Appl Soft Comput, vol. 148, p. 110904, Nov. 2023, doi: 10.1016/j.asoc.2023.110904.

A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Optimized Three Deep Learning Models Based-PSO Hyperparameters for Beijing PM2.5 Prediction,” Knowledge Engineering and Data Science, vol. 5, no. 1, p. 53, Jun. 2022, doi: 10.17977/um018v5i12022p53-66.

R. Parkavi, P. Karthikeyan, and A. Sheik Abdullah, “Enhancing personalized learning with explainable AI: A chaotic particle swarm optimization based decision support system,” Appl Soft Comput, vol. 156, p. 111451, May 2024, doi: 10.1016/j.asoc.2024.111451.

A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Archives of Computational Methods in Engineering, vol. 29, no. 5, pp. 2531–2561, Aug. 2022, doi: 10.1007/s11831-021-09694-4.

G. Yuan, B. Wang, B. Xue, and M. Zhang, “Particle Swarm Optimization for Efficiently Evolving Deep Convolutional Neural Networks Using an Autoencoder-Based Encoding Strategy,” IEEE Transactions on Evolutionary Computation, vol. 28, no. 5, pp. 1190–1204, Oct. 2024, doi: 10.1109/TEVC.2023.3245322.

M. Zhao, H. Zhao, and M. Zhao, “Particle Swarm Optimization Algorithm With Adaptive Two-Population Strategy,” IEEE Access, vol. 11, pp. 62242–62260, 2023, doi: 10.1109/ACCESS.2023.3287859.

C. Zhao and D. Guo, “Particle Swarm Optimization Algorithm With Self-Organizing Mapping for Nash Equilibrium Strategy in Application of Multiobjective Optimization,” IEEE Trans Neural Netw Learn Syst, vol. 32, no. 11, pp. 5179–5193, Nov. 2021, doi: 10.1109/TNNLS.2020.3027293.

X. Xia et al., “A Particle Swarm Optimization With Adaptive Learning Weights Tuned by a Multiple-Input Multiple-Output Fuzzy Logic Controller,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 7, pp. 2464–2478, Jul. 2023, doi: 10.1109/TFUZZ.2022.3227464.

S. Ding, W. Li, and Y. Huang, “Particle swarm optimization algorithm with dual population adaptive mutation,” in 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), IEEE, Dec. 2022, pp. 168–174. doi: 10.1109/ICCICC57084.2022.10101561.

S. S. Berutu, H. Budiati, J. Jatmika, and F. Gulo, “Data preprocessing approach for machine learning-based sentiment classification,” JURNAL INFOTEL, vol. 15, no. 4, pp. 317–325, Nov. 2023, doi: 10.20895/infotel.v15i4.1030.

K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.

F. M. Harper and J. A. Konstan, “The MovieLens Datasets,” ACM Trans Interact Intell Syst, vol. 5, no. 4, pp. 1–19, Jan. 2016, doi: 10.1145/2827872.

H. A. Adyatma and Z. K. A. Baizal, “Book Recommender System Using Matrix Factorization with Alternating Least Square Method,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1286–1292, Jul. 2023, doi: 10.47065/josh.v4i4.3816.

N. P. Widyasprana, I. M. W. Wirawan, I. G. S. Astawa, and I. D. M. Bayu Atmaja Darmawan, “Analisis Algoritma ALS-MF (Alternating Least Square Matrix Factorization) dengan SVD (Singular Value Decomposition) pada Metode Collaborative Filtering,” JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), vol. 13, no. 2, p. 347, Jul. 2024, doi: 10.24843/JLK.2024.v13.i02.p12.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-Scale Parallel Collaborative Filtering for the Netflix Prize,” in Algorithmic Aspects in Information and Management, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 337–348. doi: 10.1007/978-3-540-68880-8_32.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.

Additional Files

Published

2025-09-13

How to Cite

[1]
F. . Yusfida A’la, N. . Firdaus, and A. . Supriyadi, “Optimizing Alternating Least Squares for Recommender Systems Using Particle Swarm Optimization”, J. Tek. Inform. (JUTIF), vol. 6, no. 4, pp. 2870–2880, Sep. 2025.