Brain Tumor Auto Segmentation On 3D MRI Using Deep Neural Network
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.5106Keywords:
Brain Tumor, CNN, DNN, Segmentation, 3D UNetAbstract
Accurate and automated segmentation of brain tumours from Magnetic Resonance Imaging (MRI) is crucial for clinical diagnosis and treatment planning, yet it remains a significant challenge due to tumour heterogeneity and data imbalance. This research investigation examines the effectiveness of a 3D UNet architecture for the segmentation of brain tumours utilizing MRI imaging modalities. The research employs the BRATS 2021 dataset, which consists of 675 MRI datasets across four distinct imaging modalities (FLAIR, T1-Weighted, T1-Contrast, and T2-Weighted) and encompasses four distinct segmentation label classes. The employed model integrated soft dice loss and dice coefficient as its loss functions, with the objective of achieving convergence despite the presence of imbalanced data. While constraints related to resources limited the training process, the model yielded promising outcomes, exhibiting high accuracy (99.43%) and specificity (99.5%), The model aids medical professionals in understanding tumor growth and enhances treatment planning via segmentation predictions in surgery. Nevertheless, the sensitivity, particularly concerning non-enhancing tumour classes, persists as a significant challenge, underscoring the necessity for future research to concentrate on data-centric methodologies and enhanced pre-processing techniques to improve model efficacy in critical medical applications such as the segmentation of brain tumours.
Downloads
References
M. Li, L. Kuang, S. Xu, and Z. Sha, “Brain Tumor Detection Based on Multimodal Information Fusion and Convolutional Neural Network,” IEEE Access, vol. 7, pp. 180134–180146, 2019, doi: 10.1109/ACCESS.2019.2958370.
M. Paluszek and S. Thomas, “An Overview of Machine Learning,” in MATLAB Machine Learning Recipes, Berkeley, CA: Apress, 2024, pp. 1–19. doi: 10.1007/978-1-4842-9846-6_1.
A. A. Verma et al., “Implementing machine learning in medicine,” Canadian Medical Association Journal, vol. 193, no. 34, pp. E1351–E1357, Aug. 2021, doi: 10.1503/cmaj.202434.
X. Tan et al., “Improving Massive MIMO Message Passing Detectors With Deep Neural Network,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1267–1280, Feb. 2020, doi: 10.1109/TVT.2019.2960763.
Y.-H. Lee, J. H. Won, S. Kim, Q.-S. Auh, and Y.-K. Noh, “Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging,” Sci Rep, vol. 12, no. 1, p. 11352, July 2022, doi: 10.1038/s41598-022-15231-5.
A. J. Moshayedi, A. S. Roy, A. Kolahdooz, and Y. Shuxin, “Deep Learning Application Pros And Cons Over Algorithm,” EAI Endorsed Trans AI Robotics, vol. 1, pp. 1–13, Feb. 2022, doi: 10.4108/airo.v1i.19.
C. Han et al., “Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection,” IEEE Access, vol. 7, pp. 156966–156977, 2019, doi: 10.1109/ACCESS.2019.2947606.
A. K. Sahoo, P. Parida, K. Muralibabu, and S. Dash, “An improved DNN with FFCM method for multimodal brain tumor segmentation,” Intelligent Systems with Applications, vol. 18, p. 200245, May 2023, doi: 10.1016/j.iswa.2023.200245.
Mohammed Ahtesham Farooqui, “Machine Learning in Brain Tumor Diagnosis: Assessing the Efficacy of Diverse Methods,” pst, vol. 48, no. 4, pp. 4315–4323, Dec. 2024, doi: 10.52783/pst.1272.
O. Kouli, A. Hassane, D. Badran, T. Kouli, K. Hossain-Ibrahim, and J. D. Steele, “Automated brain tumor identification using magnetic resonance imaging: A systematic review and meta-analysis,” Neuro-Oncology Advances, vol. 4, no. 1, p. vdac081, Jan. 2022, doi: 10.1093/noajnl/vdac081.
B. Deepa, M. Murugappan, M. G. Sumithra, M. Mahmud, and M. S. Al-Rakhami, “Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification Using Hybridized Machine Learning Algorithm,” IEEE Access, vol. 10, pp. 3848–3863, 2022, doi: 10.1109/ACCESS.2021.3100549.
R. Sheard, Ed., Understanding brain tumours: a guide for people with brain or spinal cord tumours, their families and friends, May 2022. Woolloomooloo: Cancer Council of New South Wales, 2022.
K. R. Prabha, B. Nataraj, A. Karthikeyan, N. Mukilan, and M. S. Parkavin, “MRI Imaging for the Detection and Diagnosis of Brain Tumors,” in 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India: IEEE, Sept. 2023, pp. 1541–1546. doi: 10.1109/ICOSEC58147.2023.10276177.
R. Di Bonaventura et al., “Reassessing the Role of Brain Tumor Biopsy in the Era of Advanced Surgical, Molecular, and Imaging Techniques—A Single-Center Experience with Long-Term Follow-Up,” Journal of Personalized Medicine, vol. 11, no. 9, p. 909, Sept. 2021, doi: 10.3390/jpm11090909.
A. Kirimtat, O. Krejcar, and A. Selamat, “Brain MRI Modality Understanding: A Guide for Image Processing and Segmentation,” in Bioinformatics and Biomedical Engineering, vol. 12108, I. Rojas, O. Valenzuela, F. Rojas, L. J. Herrera, and F. Ortuño, Eds., Cham: Springer International Publishing, 2020, pp. 705–715. doi: 10.1007/978-3-030-45385-5_63.
A. Pathak, M. Kamani, and R. Priyanka, “Brain Tumor Segmentation Using Modified ResUNET Architecture,” in 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India: IEEE, Nov. 2023, pp. 1150–1156. doi: 10.1109/ICSCNA58489.2023.10370084.
X. Zhang, X. Zhang, and W. Wang, “Convolutional Neural Network,” in Intelligent Information Processing with Matlab, Singapore: Springer Nature Singapore, 2023, pp. 39–71. doi: 10.1007/978-981-99-6449-9_2.
D. Gramlich, P. Pauli, C. W. Scherer, F. Allgöwer, and C. Ebenbauer, “Convolutional Neural Networks as 2-D systems.” arXiv, 2023. doi: 10.48550/ARXIV.2303.03042.
C.-W. Hsu et al., “Three-dimensional-generator U-net for dual-resonant scanning multiphoton microscopy image inpainting and denoising,” Biomed. Opt. Express, vol. 13, no. 12, p. 6273, Dec. 2022, doi: 10.1364/BOE.474082.
U. Baid et al., “RSNA-ASNR-MICCAI-BraTS-2021.” The Cancer Imaging Archive, 2023. doi: 10.7937/JC8X-9874.
A. Saleh, R. Sukaik, and S. S. Abu-Naser, “Brain Tumor Classification Using Deep Learning,” in 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), Gaza, Palestine: IEEE, Aug. 2020, pp. 131–136. doi: 10.1109/iCareTech49914.2020.00032.
I. Abd El Kader et al., “Brain Tumor Detection and Classification on MR Images by a Deep Wavelet Auto-Encoder Model,” Diagnostics, vol. 11, no. 9, p. 1589, Aug. 2021, doi: 10.3390/diagnostics11091589.
K. Ejaz, M. S. M. Rahim, U. I. Bajwa, H. Chaudhry, A. Rehman, and F. Ejaz, “Hybrid Segmentation Method With Confidence Region Detection for Tumor Identification,” IEEE Access, vol. 9, pp. 35256–35278, 2021, doi: 10.1109/ACCESS.2020.3016627.
A. H. Abdel-Gawad, L. A. Said, and A. G. Radwan, “Optimized Edge Detection Technique for Brain Tumor Detection in MR Images,” IEEE Access, vol. 8, pp. 136243–136259, 2020, doi: 10.1109/ACCESS.2020.3009898.
A. Hossain et al., “A YOLOv3 Deep Neural Network Model to Detect Brain Tumor in Portable Electromagnetic Imaging System,” IEEE Access, vol. 9, pp. 82647–82660, 2021, doi: 10.1109/ACCESS.2021.3086624.
H. B. Li et al., “The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn).” arXiv, 2023. doi: 10.48550/ARXIV.2305.09011.
A. S. Reddy and G. Malleswari, “Efficient Brain Tumor Segmentation using Kernel Representation,” in 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India: IEEE, May 2023, pp. 1006–1011. doi: 10.1109/ICICCS56967.2023.10142621.
I. Gammoudi and M. A. Mahjoub, “Brain Tumor Segmentation using Community Detection Algorithm,” in 2021 International Conference on Cyberworlds (CW), Caen, France: IEEE, Sept. 2021, pp. 57–63. doi: 10.1109/CW52790.2021.00016.
A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems, Second edition. in Covid-19 collection. Beijing Boston Farnham Sebastopol Tokyo: O’Reilly, 2019.
U. Baid et al., “The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification,” arXiv.org. July 2021. Accessed: Aug. 21, 2024. [Online]. Available: https://arxiv.org/abs/2107.02314v2
H. S. Sanjay and M. Niranjanamurthy, Medical Imaging, 1st ed. Wiley, 2023. doi: 10.1002/9781119785590.
S. Sandfeld, “Exploratory Data Analysis,” in Materials Data Science, Cham: Springer International Publishing, 2024, pp. 179–206. doi: 10.1007/978-3-031-46565-9_9.
A. Charpentier, “Pre-processing,” in Insurance, Biases, Discrimination and Fairness, Cham: Springer Nature Switzerland, 2024, pp. 385–396. doi: 10.1007/978-3-031-49783-4_10.
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.” arXiv, June 2016. Accessed: Sept. 28, 2023. [Online]. Available: http://arxiv.org/abs/1606.06650
I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. in Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2016.
O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Scientific Reports, vol. 14, no. 1, p. 6086, Mar. 2024, doi: 10.1038/s41598-024-56706-x.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Melda Agarina, Muh Royan Fauzi Maulana, Sutedi, Arman Suryadi Karim

This work is licensed under a Creative Commons Attribution 4.0 International License.