Sentiment Analysis Of Indihome Service Based On Geo Location Using The Bert Model On Platform X

Authors

  • Robiatul Adawiyah Siregar Informatics, Engineering Faculty, Telkom University, Indonesia
  • Fitriyani Informatics, Engineering Faculty, Telkom University, Indonesia
  • Lazuardy Syahrul Darfiansa Informatics, Engineering Faculty, Telkom University, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.5.4993

Keywords:

Geo Location, IndiHome, IndoBERT, Platform X, Sentiment Analysis

Abstract

The rapid growth of internet usage in Indonesia has led more people to express their feelings, whether positive or negative, about online services, including IndiHome, through social media platforms such as X (formerly Twitter). This study aims to analyze public sentiment toward IndiHome services based on geographic location using the IndoBERT natural language processing model. The data consists of 3.307 Indonesian tweets that are geo-tagged and categorized into three sentiment groups: good, okay, and bad. The research process involves collecting the data, cleaning it (organizing and splitting words), and testing the IndoBERT model with a confusion matrix and classification scores. The findings reveal that negative feelings are more prevalent in most locations, especially in Java. The IndoBERT model achieved its highest accuracy of 80% in detecting negative sentiment. However, there is still room for improvement in distinguishing between positive and neutral sentiments, possibly due to data imbalance. The study shows how combining sentiment analysis with geo-location can provide strategic insights to service providers. In practical terms, these insights can help IndiHome prioritize infrastructure upgrades, improve customer support in areas with high dissatisfaction, and assist policymakers in promoting fairer digital access across regions. Beyond these practical implications, this study also contributes to the field of informatics by demonstrating the application of a transformer-based NLP model (IndoBERT) combined with geo-tagged data for regional sentiment mapping- a relatively unexplored approach in the Indonesian context. The integration of geospatial analysis with sentiment classification offers methodological advances for NLP-based service evaluation beyond business applications.

Downloads

Download data is not yet available.

References

R. Puspita and A. Widodo, “Analisis Sentimen terhadap Layanan Indihome di Twitter dengan Metode Machine Learning,” vol. 6, no. 4, pp. 759–766, 2021, doi: 10.32493/informatika.v6i4.13247.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 650, Jul. 2020, doi: 10.30865/mib.v4i3.2181.

S. M. Permataning Tyas, B. S. Rintyarna, and W. Suharso, “The Impact of Feature Extraction to Naïve Bayes Based Sentiment Analysis on Review Dataset of Indihome Services,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 1–10, Apr. 2022, doi: 10.31849/digitalzone.v13i1.9158.

A. N. Nurkalyisah, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen pada Twitter Berbahasa Indonesia Terhadap Penurunan Performa Layanan Indihome dan Telkomsel,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 10, no. 4, p. 387, Dec. 2022, doi: 10.26418/justin.v10i4.50858.

A. Aljabar, B. M. Karomah, K. Kunci, and : Bert, “Mengungkap Opini Publik: Pendekatan BERT-based-caused untuk Analisis Sentimen pada Komentar Film,” 2024.

E. Yuniar and N. Hendrastuty, “Perbandingan Metode Naive Bayes, Random Forest dan SVM Untuk Analisis Sentimen Pada Twitter Tentang Kenaikan Gaji Guru,” Technology and Science (BITS), vol. 6, no. 4, 2025, doi: 10.47065/bits.v6i4.6970.

H. Jayadianti, W. Kaswidjanti, A. T. Utomo, S. Saifullah, F. A. Dwiyanto, and R. Drezewski, “Sentiment analysis of Indonesian reviews using fine-tuning IndoBERT and R-CNN,” ILKOM Jurnal Ilmiah, vol. 14, no. 3, pp. 348–354, Dec. 2022, doi: 10.33096/ilkom.v14i3.1505.348-354.

Dhendra and V. Gayuh Utomo, “Benchmarking IndoBERT and Transformer Models for Sentiment Classification on Indonesian E-Government Service Reviews,” Jurnal Transformatika, vol. 23, no. 1, pp. 86–95, Jul. 2025, doi: 10.26623/transformatika.v23i1.12095.

Muhamad Agung Nulhakim, Yuliant Sibaroni, and Ku Muhammad Naim Ku Khalif, “Geospatial Sentiment Analysis Using Twitter Data on Natural Disasters in Indonesia with Support Vector Machine (SVM) Algorithm,” International Journal on Information and Communication Technology (IJoICT), vol. 10, no. 2, pp. 242–258, Jan. 2025, doi: 10.21108/ijoict.v10i2.1032.

L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using Bert Language Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 3, pp. 746–757, Aug. 2023, doi: 10.26555/jiteki.v9i3.26490.

D. Fatma Sjoraida, B. Wibawa, K. Guna, and D. Yudhakusuma, “Analisis Sentimen Film Dirty Vote Menggunakan BERT (Bidirectional Encoder Representations from Transformers),” Universitas Langlangbuana, vol. 8, no. 2, 2024, doi: 10.35870/jti.

A. Elhan, M. Kusuma, D. Hardhienata, Y. Herdiyeni, S. H. Wijaya, and J. Adisantoso, “Analisis Sentimen Pengguna Twitter terhadap Vaksinasi COVID-19 di Indonesia menggunakan Algoritme Random Forest dan BERT Sentiment Analysis of Twitter Users on COVID-19 Vaccines in Indonesia using Random Forest and BERT Algorithms”, [Online]. Available: https://jurnal.ipb.ac.id/index.php/jika

R. Mas, R. Wahyu, P. Kusuma Atmaja, and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),” JEISBI, vol. 02, p. 2021.

Y. Roh, G. Heo, and S. E. Whang, “A Survey on Data Collection for Machine Learning: a Big Data -- AI Integration Perspective,” Nov. 2018, [Online]. Available: http://arxiv.org/abs/1811.03402

B. Wilie et al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding.” [Online]. Available: https://github.com/annisanurulazhar/absa-playground

Muhamad Agung Nulhakim, Yuliant Sibaroni, and Ku Muhammad Naim Ku Khalif, “Geospatial Sentiment Analysis Using Twitter Data on Natural Disasters in Indonesia with Support Vector Machine (SVM) Algorithm,” International Journal on Information and Communication Technology (IJoICT), vol. 10, no. 2, pp. 242–258, Jan. 2025, doi: 10.21108/ijoict.v10i2.1032.

C. Shaw, P. LaCasse, and L. Champagne, “Exploring emotion classification of indonesian tweets using large scale transfer learning via IndoBERT,” Soc Netw Anal Min, vol. 15, no. 1, Dec. 2025, doi: 10.1007/s13278-025-01439-6.

J. Ma, W. Wang, and Q. Jin, “A Survey of Deep Learning for Geometry Problem Solving,” Jul. 2025, [Online]. Available: http://arxiv.org/abs/2507.11936

L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using Bert Language Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 3, pp. 746–757, Aug. 2023, doi: 10.26555/jiteki.v9i3.26490.

M. Agung Nulhakim, Y. Sibaroni, and K. Muhammad Naim Ku Khalif, “Geospatial Sentiment Analysis Using Twitter Data on Natural Disasters in Indonesia with Support Vector Machine,” Intl. Journal on ICT, vol. 10, no. 2, pp. 242–258, 2024, doi: 10.21108/ijoict.v10i2.1032.

H. Yan and D. Shao, “Enhancing Transformer Training Efficiency with Dynamic Dropout,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2411.03236

C. H. Lin and U. Nuha, “Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy,” J Big Data, vol. 10, no. 1, Dec. 2023, doi: 10.1186/s40537-023-00782-9.

I. Daqiqil, H. Saputra, Syamsudhuha, R. Kurniawan, and Y. Andriyani, “Sentiment analysis of student evaluation feedback using transformer-based language models,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 36, no. 2, pp. 1127–1139, Nov. 2024, doi: 10.11591/ijeecs.v36.i2.pp1127-1139.

A. Jazuli, Widowati, and R. Kusumaningrum, “Optimizing Aspect-Based Sentiment Analysis Using BERT for Comprehensive Analysis of Indonesian Student Feedback,” Applied Sciences (Switzerland), vol. 15, no. 1, Jan. 2025, doi: 10.3390/app15010172.

H. Yin, X. Song, S. Yang, and J. Li, “Sentiment analysis and topic modeling for COVID-19 vaccine discussions,” World Wide Web, vol. 25, no. 3, pp. 1067–1083, May 2022, doi: 10.1007/s11280-022-01029-y.

Additional Files

Published

2025-10-16

How to Cite

[1]
R. A. Siregar, F. Fitriyani, and L. S. . Darfiansa, “Sentiment Analysis Of Indihome Service Based On Geo Location Using The Bert Model On Platform X”, J. Tek. Inform. (JUTIF), vol. 6, no. 5, pp. 2975–2990, Oct. 2025.