Comparison of IndoNanoT5 and IndoGPT for Advancing Indonesian Text Formalization in Low-Resource Settings
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.4935Keywords:
IndoGPT, IndoNanoT5, Indonesian Language, Informal-to-Formal, Text Style TransferAbstract
The rapid growth of digital communication in Indonesia has led to a distinct informal linguistic style that poses significant challenges for Natural Language Processing (NLP) systems trained on formal text. This discrepancy often degrades the performance of downstream tasks like machine translation and sentiment analysis. This study aims to provide the first systematic comparison of IndoNanoT5 (encoder-decoder) and IndoGPT (decoder-only) architectures for Indonesian informal-to-formal text style transfer. We conduct comprehensive experiments using the STIF-INDONESIA dataset through rigorous hyperparameter optimization, multiple evaluation metrics, and statistical significance testing. The results demonstrate clear superiority of the encoder-decoder architecture, with IndoNanoT5-base achieving a peak BLEU score of 55.99, significantly outperforming IndoGPT's highest score of 51.13 by 4.86 points—a statistically significant improvement (p<0.001) with large effect size (Cohen's d = 0.847). This establishes new performance benchmarks with 28.49 BLEU points improvement over previous methods, representing a 103.6% relative gain. Architectural analysis reveals that bidirectional context processing, explicit input-output separation, and cross-attention mechanisms provide critical advantages for handling Indonesian morphological complexity. Computational efficiency analysis shows important trade-offs between inference speed and output quality. This research advances Indonesian text normalization capabilities and provides empirical evidence for architectural selection in sequence-to-sequence tasks for morphologically rich, low-resource languages.
Downloads
References
“Digital 2025: Indonesia — DataReportal – Global Digital Insights.” Accessed: Jun. 19, 2025. [Online]. Available: https://datareportal.com/reports/digital-2025-indonesia
S. Maddalena, “Digital 2025,” We Are Social Indonesia. Accessed: Jun. 21, 2025. [Online]. Available: https://wearesocial.com/id/blog/2025/02/digital-2025/
A. G. Ganie, “Presence of informal language, such as emoticons, hashtags, and slang, impact the performance of sentiment analysis models on social media text?,” 2023, arXiv. doi: 10.48550/ARXIV.2301.12303.
S. Rao and J. Tetreault, “Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), M. Walker, H. Ji, and A. Stent, Eds., New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp. 129–140. doi: 10.18653/v1/N18-1012.
T. Shen, T. Lei, R. Barzilay, and T. Jaakkola, “Style transfer from non-parallel text by cross-alignment,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, in NIPS’17. Red Hook, NY, USA: Curran Associates Inc., Dec. 2017, pp. 6833–6844.
Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward Controlled Generation of Text,” in Proceedings of the 34th International Conference on Machine Learning, PMLR, Jul. 2017, pp. 1587–1596. Accessed: Jun. 19, 2025. [Online]. Available: https://proceedings.mlr.press/v70/hu17e.html
J. Li, R. Jia, H. He, and P. Liang, “Delete, Retrieve, Generate: a Simple Approach to Sentiment and Style Transfer,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), M. Walker, H. Ji, and A. Stent, Eds., New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp. 1865–1874. doi: 10.18653/v1/N18-1169.
K. Krishna, J. Wieting, and M. Iyyer, “Reformulating Unsupervised Style Transfer as Paraphrase Generation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds., Online: Association for Computational Linguistics, Nov. 2020, pp. 737–762. doi: 10.18653/v1/2020.emnlp-main.55.
G. Lample, S. Subramanian, E. M. Smith, L. Denoyer, M. Ranzato, and Y.-L. Boureau, “MULTIPLE-ATTRIBUTE TEXT REWRITING,” 2019.
W. Xu, A. Ritter, B. Dolan, R. Grishman, and C. Cherry, “Paraphrasing for Style,” in Proceedings of COLING 2012, M. Kay and C. Boitet, Eds., Mumbai, India: The COLING 2012 Organizing Committee, Dec. 2012, pp. 2899–2914. Accessed: Jun. 21, 2025. [Online]. Available: https://aclanthology.org/C12-1177/
A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Jun. 21, 2025. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”.
M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, Eds., Online: Association for Computational Linguistics, Jul. 2020, pp. 7871–7880. doi: 10.18653/v1/2020.acl-main.703.
Y. Lyu et al., “StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds., Online: Association for Computational Linguistics, Jun. 2021, pp. 2116–2138. doi: 10.18653/v1/2021.naacl-main.171.
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are Unsupervised Multitask Learners”.
T. Brown et al., “Language Models are Few-Shot Learners,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2020, pp. 1877–1901. Accessed: Jun. 21, 2025. [Online]. Available: https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
G. Luo, Y. Han, L. Mou, and M. Firdaus, “Prompt-Based Editing for Text Style Transfer,” in Findings of the Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Dec. 2023, pp. 5740–5750. doi: 10.18653/v1/2023.findings-emnlp.381.
N. Aliyah Salsabila, Y. Ardhito Winatmoko, A. Akbar Septiandri, and A. Jamal, “Colloquial Indonesian Lexicon,” in 2018 International Conference on Asian Language Processing (IALP), Bandung, Indonesia: IEEE, Nov. 2018, pp. 226–229. doi: 10.1109/IALP.2018.8629151.
A. M. Barik, R. Mahendra, and M. Adriani, “Normalization of Indonesian-English Code-Mixed Twitter Data,” in Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), W. Xu, A. Ritter, T. Baldwin, and A. Rahimi, Eds., Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 417–424. doi: 10.18653/v1/D19-5554.
H. A. Wibowo et al., “Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation,” in 2020 International Conference on Asian Language Processing (IALP), Dec. 2020, pp. 310–315. doi: 10.1109/IALP51396.2020.9310459.
G. I. Winata et al., “NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages,” in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, A. Vlachos and I. Augenstein, Eds., Dubrovnik, Croatia: Association for Computational Linguistics, May 2023, pp. 815–834. doi: 10.18653/v1/2023.eacl-main.57.
B. Wilie et al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, K.-F. Wong, K. Knight, and H. Wu, Eds., Suzhou, China: Association for Computational Linguistics, Dec. 2020, pp. 843–857. doi: 10.18653/v1/2020.aacl-main.85.
M. Adriani, J. Asian, B. Nazief, S. M. M. Tahaghoghi, and H. E. Williams, “Stemming Indonesian: A confix-stripping approach,” ACM Transactions on Asian Language Information Processing, vol. 6, no. 4, pp. 1–33, Dec. 2007, doi: 10.1145/1316457.1316459.
I. F. Putra and A. Purwarianti, “Improving Indonesian Text Classification Using Multilingual Language Model,” in 2020 7th International Conference on Advance Informatics: Concepts, Theory and Applications (ICAICTA), Tokoname, Japan: IEEE, Sep. 2020, pp. 1–5. doi: 10.1109/ICAICTA49861.2020.9429038.
F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” in Proceedings of the 28th International Conference on Computational Linguistics, D. Scott, N. Bel, and C. Zong, Eds., Barcelona, Spain (Online): International Committee on Computational Linguistics, Dec. 2020, pp. 757–770. doi: 10.18653/v1/2020.coling-main.66.
S. Cahyawijaya et al., “IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, M.-F. Moens, X. Huang, L. Specia, and S. W. Yih, Eds., Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 8875–8898. doi: 10.18653/v1/2021.emnlp-main.699.
D. Uthus, S. Ontañón, J. Ainslie, and M. Guo, “mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences,” 2023, arXiv. doi: 10.48550/ARXIV.2305.11129.
G. I. Winata, R. Zhang, and D. I. Adelani, “MINERS: Multilingual Language Models as Semantic Retrievers,” in Findings of the Association for Computational Linguistics: EMNLP 2024, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 2742–2766. doi: 10.18653/v1/2024.findings-emnlp.155.
“LazarusNLP/IndoNanoT5-base · Hugging Face.” Accessed: Jun. 19, 2025. [Online]. Available: https://huggingface.co/LazarusNLP/IndoNanoT5-base
“indobenchmark/indogpt · Hugging Face.” Accessed: Jun. 19, 2025. [Online]. Available: https://huggingface.co/indobenchmark/indogpt
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fahri Firdausillah, Ardytha Luthfiarta, Adhitya Nugraha, Ika Novita Dewi, Lutfi Azis Hafiizhudin, Najma Amira Mumtaz, Ulima Muna Syarifah

This work is licensed under a Creative Commons Attribution 4.0 International License.