Predicting Hypnotherapy Effectiveness Using Ensemble Learning: A Case Study at The Mind Solution Hypnotherapy Clinic

Authors

  • Lindu Budi Fitrianto Master of Information Technology, Faculty of Information Technology and Industry, Universitas STIKUBANK, Indonesia
  • Eli Zuliarso Master of Information Technology, Faculty of Information Technology and Industry, Universitas STIKUBANK, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.5.4859

Keywords:

Clinical decision support, Ensemble learning, Hypnotherapy effectiveness, Mental health, Predictive modeling, Random Forest

Abstract

Mental health is recognized as a universal human right, yet effective interventions for psychological disorders like anxiety and phobias remain challenging. Hypnotherapy shows promise but suffers from variable effectiveness across individuals, compounded by limited data-driven tools for outcome prediction in clinical settings, particularly in Indonesia where social stigma impedes accessibility. This study aims to (1) identify demographic/clinical factors influencing hypnotherapy success, (2) develop an ensemble learning-based predictive model, and (3) evaluate its performance against conventional methods. Using retrospective data from 276 patients at Mind Solution Hypnotherapy Clinic, we implemented preprocessing (missing values imputation, label encoding) and trained Decision Tree and Random Forest models via Orange Data Mining, validated through *5-fold cross-validation*. Results demonstrate Random Forest superiority (accuracy: 92.7%; precision: 94.2%; AUC: 0.918) over Decision Tree, with key predictors being gender (32.54% gain ratio), occupation (31.75%), and birth order (15.58%). Notably, 71.5% of patients achieved improvement in just one session. These findings confirm ensemble learning’s efficacy in personalizing hypnotherapy protocols, offering clinicians a decision-support tool to optimize resource allocation. The study bridges AI and mental health practice, providing empirical evidence to reduce societal stigma while advancing predictive analytics in psychotherapy.

Downloads

Download data is not yet available.

References

WHO, “World Mental Health 2023,” 2023. [Online]. Available: https://www.who.int/campaigns/world-mental-health-day/2023?utm_source=chatgpt.com

J. Rosendahl, C. T. Alldredge, and A. Haddenhorst, “Meta-analytic evidence on the efficacy of hypnosis for mental and somatic health issues: a 20-year perspective,” 2023, Frontiers Media SA. doi: 10.3389/fpsyg.2023.1330238.

D. Karina, I. Jurusan, T. Psikoterapi, U. Uin, S. Gunung, and D. Bandung, “Metode Hipnoterapi dalam Mengobati Trauma,” Gunung Djati Conference Series, vol. 19, 2023.

D. G. Leo, S. S. Keller, and R. Proietti, “‘Close your eyes and relax’: the role of hypnosis in reducing anxiety, and its implications for the prevention of cardiovascular diseases,” 2024, Frontiers Media SA. doi: 10.3389/fpsyg.2024.1411835.

Sri Bungaria, Deddy Wandra Maraksa, and Dudut Tanjung, “INTERVENSI HIPNOTERAPI UNTUK MENGURANGI NYERI PADA LUKA BAKAR _ TINJAUAN LITERATUR SISTEMATIS,” Jurnal Kesehatan Tambusai, 2024.

T. Handayani, D. Ayubi, and D. Anshari, “Literasi Kesehatan Mental Orang Dewasa dan Penggunaan Pelayanan Kesehatan Mental,” Perilaku dan Promosi Kesehatan: Indonesian Journal of Health Promotion and Behavior, vol. 2, no. 1, p. 9, Jul. 2020, doi: 10.47034/ppk.v2i1.3905.

A. Asfahani, E. Yuniarti, L. Husnita, P. Pahmi, and N. S. Jamin, “PENINGKATAN KESADARAN MASYARAKAT TENTANG PENTINGNYA KESEHATAN MENTAL MELALUI EDUKASI PENDIDIKAN SOSIAL,” Communnity Development Journal, vol. 5, no. 2, 2024, https://doi.org/10.31004/cdj.v5i2.27389.

K. Kurniawan, I. Yosep, K. Khoirunnisa, Y. Nur’aeni, and P. Nugraha, “UPAYA PENINGKATAN KESEHATAN MENTAL MASYARAKAT MELALUI PELATIHAN DUTA KADER KESEHATAN JIWA,” JMM (Jurnal Masyarakat Mandiri), vol. 7, no. 3, p. 2306, Jun. 2023, doi: 10.31764/jmm.v7i3.14320.

N. Tri, R. Adiningrum, and N. H. Harani, “SWADHARMA (JEIS) ANALISIS PERBANDINGAN ENSEMBLE MACHINE LEARNING DENGAN TEKNIK SMOTE UNTUK PREDIKSI DIABETES,” Jurnal Elektro dan Informatika, 2025, https://doi.org/10.56486/jeis.vol5no1.681.

E. Rosta Br Sebayang, Y. Herry Chrisnanto, U. Jenderal Achmad Yani Cimahi, J. Terusan Jend Sudirman, C. Selatan, and J. Barat, “Klasifikasi Data Kesehatan Mental di Industri Teknologi Menggunakan Algoritma Random Forest,” 2023. [Online]. Available: http://ijespgjournal.org, DOI: 10.26638/ijespg.v1i3.57

S. S. A. Larasati, E. N. K. Dewi, B. H. Farhansyah, F. A. Bachtiar, and F. Pradana, “Penerapan Decision Tree dan Random Forest dalam Deteksi Tingkat Stres Manusia Berdasarkan Kondisi Tidur,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 5, pp. 1043–1050, Oct. 2024, doi: 10.25126/jtiik.2024117993.

Hasan ahmed Salman, Ali Kalakech, and Amani Steiti, “Random Forest Algorithm Overview,” Babylonian Journal of Machine Learning, 2024, https://doi.org/10.58496/BJML/2024/007.

F. Firmansyah and A. Yulianto, “Pemodelan Pembelajaran Mesin untuk Prediksi Kesehatan Mental di Tempat Kerja,” Jurnal Minfo Polgan, vol. 13, no. 1, pp. 397–407, May 2024, doi: 10.33395/jmp.v13i1.13674.

N. K. Iyortsuun, S. H. Kim, M. Jhon, H. J. Yang, and S. Pant, “A Review of Machine Learning and Deep Learning Approaches on Mental Health Diagnosis,” Feb. 01, 2023, MDPI. doi: 10.3390/healthcare11030285.

M. Fadhilla, R. Wandri, A. Hanafiah, P. R. Setiawan, Y. Arta, and S. Daulay, “Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa,” Journal of Informatics Management and Information Technology, vol. 5, no. 1, pp. 40–47, 2025, doi: 10.47065/jimat.v5i1.473.

M. Wang, A. Xu, C. Fan, and X. Sun, “Machine Learning for Predicting Personality and Psychological Symptoms from Behavioral Dynamics,” Electronics (Switzerland), vol. 14, no. 3, Feb. 2025, doi: 10.3390/electronics14030583.

N. Nurdiansyah, F. S. Febriyan, Z. G. D. Amanta, D. A. Saputra, and W. M. Baihaqi, “Analisis Kesehatan Mental untuk Mencegah Gangguan Mental pada Mahasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Random Forest,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 1–9, Nov. 2024, doi: 10.57152/malcom.v5i1.1537.

R. Al-Hakim and Y. Prokopchuk, “Predicting internal diseases in humans using machine learning: A systematic literature review,” Journal of Advanced Health Informatics Research, vol. 2, no. 1, pp. 50–63, Jan. 2025, doi: 10.59247/jahir.v2i1.195.

F. Yulian Pamuji, V. Puspaning Ramadhan, and R. Artikel, “Komparasi Algoritma Random Forest Dan Decision Tree Untuk Memprediksi Keberhasilan Immunotheraphy,” Jurnal Teknologi dan Manajemen Informatika, vol. 7, pp. 46–50, 2021, [Online]. Available: http://http://jurnal.unmer.ac.id/index.php/jtmi, https://doi.org/10.26905/jtmi.v7i1.5982

M. Rijal et al., “JOURNAL PHARMACY AND APPLICATION OF COMPUTER SCIENCES PREDIKSI DEPRESI: INOVASI TERKINI DALAM KESEHATAN MENTAL MELALUI METODE MACHINE LEARNING DEPRESSION PREDICTION: RECENT INNOVATIONS IN MENTAL HEALTH THROUGH MACHINE LEARNING METHODS,” Journal Pharmacy And Application Of Computer Sciences, 2024, https://doi.org/10.59823/jopacs.v2i1.47.

D. Kusuma Ningrum and A. Maytsa Ismawardi, “EFEKTIVITAS ALGORITMA KECERDASAN BUATAN DALAM IMPLEMENTASI KESEHATAN MENTAL : SYSTEMATIC LITERATURE REVIEW,” 2025, DOI: https://doi.org/10.36040/jati.v9i1.12457.

M. Fokkema, D. Iliescu, S. Greiff, and M. Ziegler, “Machine Learning and Prediction in Psychological Assessment: Some Promises and Pitfalls,” European Journal of Psychological Assessment, vol. 38, no. 3, pp. 165–175, May 2022, doi: 10.1027/1015-5759/a000714.

E. Zulfa, H. Amir, and R. Ginting, “ANALISIS KORELASI KESEHATAN MENTAL DAN INDEKS PRESTASI MAHASISWA JURUSAN ADMINISTRASI NIAGA POLITEKNIK NEGERI JAKARTA DENGAN KOMBINASI METODE XGBOOST DAN SHAP,” Jurnal Administrasi Profesional, vol. 05, no. 01, 2024, https://doi.org/10.32722/jap.v5i1.6923.

O. E. Aguda, S. O. Okodeh, A. A. Muslehat, and E. O. Nwoye, “Development of AI Model For Precision Anaesthesia Dosage Optimization,” Feb. 03, 2025. doi: 10.20944/preprints202502.0065.v1.

N. Karisma, A. Rofiah, S. N. Afifah, and Y. M. Manik, “Kesehatan Mental Remaja dan Tren Bunuh Diri: Peran Masyarakat Mengatasi Kasus Bullying di Indonesia,” Edu Cendikia: Jurnal Ilmiah Kependidikan, vol. 3, no. 03, pp. 560–567, Jan. 2024, doi: 10.47709/educendikia.v3i03.3439.

H. Aulia et al., “ANALISIS SENTIMEN MASYARAKAT TERHADAP KESEHATAN MENTAL PADA MEDIA SOSIAL TWITTER DENGAN MENGGUNAKAN MACHINE LEARNING,” Positif: Jurnal Sistem dan Teknologi Informasi, 2024, https://doi.org/10.31961/positif.v10i2.2545.

M. Maulidah and N. Hidayati, “PREDIKSI KESEHATAN TIDUR DAN GAYA HIDUP MENGGUNAKAN MACHINE LEARNING,” CONTEN : Computer and Network Technology, vol. 4, no. 1, 2024, [Online]. Available: http://jurnal.bsi.ac.id/index.php/conten, https://doi.org/10.31294/conten.v4i1.4918

B. Tang, S. Li, and C. Zhao, “Predicting the Performance of Students Using Deep Ensemble Learning,” J Intell, vol. 12, no. 12, Dec. 2024, doi: 10.3390/jintelligence12120124.

J. Andrean and M. R. Makful, “Hypnotherapy as a method of smoking cessation: a systematic review,” Berita Kedokteran Masyarakat, vol. 38, pp. 359–364, 2022, doi: 10.22146/bkm.v38i10.5560.

B. Ramadhan and S. F. Pane, “Pengaruh Hyperparameter Tuning untuk Efektivitas pada Pendekatan Hybrid dalam Mendiagnosis Stres dan Depresi : Tinjauan Studi Literatur,” Jurnal Tekno Insentif, vol. 18, no. 2, pp. 104–118, Dec. 2024, doi: 10.36787/jti.v18i2.1516.

Additional Files

Published

2025-10-23

How to Cite

[1]
L. B. Fitrianto and E. Zuliarso, “Predicting Hypnotherapy Effectiveness Using Ensemble Learning: A Case Study at The Mind Solution Hypnotherapy Clinic”, J. Tek. Inform. (JUTIF), vol. 6, no. 5, pp. 3899–3913, Oct. 2025.