Performance Comparison of Learned Features from Autoencoder and Shape-Based Hu Moments for Batik Classification
DOI:
https://doi.org/10.52436/1.jutif.2025.6.4.4827Keywords:
Batik classification, Convolutional autoencoder, Feature extraction, Hu Moment, Shape DescriptionAbstract
Batik classification depends critically on effective feature extraction to capture the unique geometric and visual characteristics of batik patterns. This study compares two distinct feature extraction methods for batik classification: learned features extracted via a convolutional autoencoder, and shape-based handcrafted features derived from Hu Moments. While autoencoders automatically learn complex latent representations that adapt to intricate pattern variations, Hu Moments provide invariant shape descriptors robust to rotation, scaling, and translation. The methodology involves extracting Hu Moment features and autoencoder latent features from the same batik image dataset, followed by evaluation with identical classifiers to ensure a fair comparison. Experimental results reveal key trade-offs: Hu Moments offer robustness and interpretability in capturing shape geometry, whereas autoencoder features better model complex, non-linear patterns. These findings highlight the complementary strengths of classical and learned feature extraction techniques, offering valuable insights for optimizing batik classification. This research advances feature extraction methodologies in cultural heritage image analysis, with broader applicability to pattern-rich domains like batik classification.
Downloads
References
S. Z. Novrita, Y. Yusmerita, P. Puspaneli, L. Fridayati, and F. Vebyola, “Pengembangan Video Tutorial Teknik Batik Tulis Sebagai Media Pembelajaran Pada Mata Kuliah Batik Di Departemen IKK FPP UNP,” Gorga : Jurnal Seni Rupa, vol. 12, no. 1, 2023, doi: 10.24114/gr.v12i1.39760.
Deni Priyadi, “Implementasi Marker Based Tracking pada Aplikasi Augmented Reality Batik Majalengka Berbasis Android,” Bandung Conference Series: Communication Management, vol. 3, no. 3, 2023, doi: 10.29313/bcscm.v3i3.9601.
B. J. Filia et al., “Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset,” in Procedia Computer Science, 2023. doi: 10.1016/j.procs.2023.10.552.
Hayatou Oumarou and N. Rismayanti, “Automated Classification of Empon Plants: A Comparative Study Using Hu Moments and K-NN Algorithm,” Indonesian Journal of Data and Science, vol. 4, no. 3, 2024, doi: 10.56705/ijodas.v4i3.115.
D. A. Anggoro, A. A. T. Marzuki, and W. Supriyanti, “Classification of Solo Batik patterns using deep learning convolutional neural networks algorithm,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 22, no. 1, pp. 232–240, Feb. 2024, doi: 10.12928/TELKOMNIKA.v22i1.24598.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “Batik Nitik 960 Dataset for Classification, Retrieval, and Generator,” Data (Basel), vol. 8, no. 4, 2023, doi: 10.3390/data8040063.
L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network,” Jurnal Teknoinfo, vol. 17, no. 1, 2023, doi: 10.33365/jti.v17i1.2342.
D. P. Prabowo, P. Sulistiyawati, and R. A. Pramunendar, “Pengenalan Citra Batik Menggunakan Fitur Fraktal Berdasarkan Metode Support Vector Machine (SVM),” Jurnal Informatika Upgris, vol. 8, no. 2, 2023, doi: 10.26877/jiu.v8i2.13257.
A. P. B. Salsabila, C. Rozikin, and R. I. Adam, “Klasifikasi Motif Batik Karawang Berbasis Citra Digital dengan Principal Component Analysis dan K-Nearest Neighbor,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 1, 2023, doi: 10.26418/justin.v11i1.46936.
Y. Fan, C. Hong, G. Zeng, and L. Liu, “A Deep Convolutional Encoder–Decoder–Restorer Architecture for Image Deblurring,” Neural Process Lett, vol. 56, no. 1, 2024, doi: 10.1007/s11063-024-11455-w.
B. Gunapriya, T. Rajesh, A. Thirumalraj, and B. Manjunatha, “LW-CNN-based extraction with optimized encoder-decoder model for detection of diabetic retinopathy,” Journal of Autonomous Intelligence, vol. 7, no. 3, 2024, doi: 10.32629/jai.v7i3.1095.
M. F. Dzulqarnain, A. Fadlil, and I. Riadi, “Improving the Accuracy of Batik Classification using Deep Convolutional Auto Encoder,” Compiler, vol. 13, no. 2, p. 123, Dec. 2024, doi: 10.28989/compiler.v13i2.2649.
J. Li, J. Wang, and Z. Lin, “SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics,” Brief Bioinform, vol. 25, no. 1, 2024, doi: 10.1093/bib/bbad490.
A. Ahmed, D. Huang, and S. Y. Arafat, “Enriching Urdu NER with BERT Embedding, Data Augmentation, and Hybrid Encoder-CNN Architecture,” ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 23, no. 4, 2024, doi: 10.1145/3648362.
S. Chen and W. Guo, “Auto-Encoders in Deep Learning—A Review with New Perspectives,” 2023. doi: 10.3390/math11081777.
J. A. M. Rodríguez, “Micro-Scale Surface Recognition via Microscope System Based on Hu Moments Pattern and Micro Laser Line Projection,” Metals (Basel), vol. 13, no. 5, 2023, doi: 10.3390/met13050889.
I. Gancheva and E. Peneva, “Methodology based on the Hu moment invariants for object comparison on radar satellite imagery,” in Journal of Physics: Conference Series, 2024. doi: 10.1088/1742-6596/2668/1/012012.
Akmal, R. Munir, and J. Santoso, “Automatic Weight of Color, Texture, and Shape Features in Content-Based Image Retrieval Using Artificial Neural Network,” International Journal on Informatics Visualization, vol. 7, no. 3, 2023, doi: 10.30630/joiv.7.3.1184.
K. Azmi, S. Defit, and Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, pp. 28–40, 2023.
I. Maulana, H. Sastypratiwi, H. Muhardi, N. Safriadi, and H. Sujaini, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Motif Batik pada Aplikasi Computer Vision Berbasis Android,” JEPIN - Jurnal Edukasi dan Penelitian Informatika, vol. 9, no. 3, pp. 384–393, 2023.
Y. Liu, “Characterization of Immediate Pressing Tactics in Soccer in the Age of Artificial Intelligence,” Applied Mathematics and Nonlinear Sciences, vol. 9, no. 1, 2024, doi: 10.2478/amns.2023.2.01415.
D. Rahadiyan, S. Hartati, Wahyono, and A. P. Nugroho, “Feature aggregation for nutrient deficiency identification in chili based on machine learning,” Artificial Intelligence in Agriculture, vol. 8, 2023, doi: 10.1016/j.aiia.2023.04.001.
Y. Farooq and S. Savas, “Noise Removal from the Image Using Convolutional Neural Networks-Based Denoising Auto Encoder,” Journal of Emerging Computer Technologies, vol. 3, no. 1, 2024, doi: 10.57020/ject.1390428.
Z. L. Chuan et al., “A Comparative of Two-Dimensional Statistical Moment Invariants Features in Formulating an Automated Probabilistic Machine Learning Identification Algorithm for Forensic Application,” Malaysian Journal of Fundamental and Applied Sciences, vol. 19, no. 4, 2023, doi: 10.11113/mjfas.v19n4.2917.
L. Fitriani, D. Tresnawati, and M. B. Sukriyansah, “Image Classification On Garutan Batik Using Convolutional Neural Network with Data Augmentation,” JUITA : Jurnal Informatika, vol. 11, no. 1, 2023, doi: 10.30595/juita.v11i1.16166.
S. Zhang and Y. Gao, “Hybrid multi-objective evolutionary model compression with convolutional neural networks,” Results in Engineering, vol. 21, 2024, doi: 10.1016/j.rineng.2024.101751.
Sunardi, A. Yudhana, and M. Fahmi, “SVM-CNN Hybrid Classification for Waste Image Using Morphology and HSV Color Model Image Processing,” Traitement du Signal, vol. 40, no. 4, pp. 1763–1769, Aug. 2023, doi: 10.18280/ts.400446.
W. Zhang, R. Chen, and B. Wang, “A robust watermarking algorithm against JPEG compression based on multiscale autoencoder,” IET Image Process, vol. 18, no. 2, 2024, doi: 10.1049/ipr2.12961.
K. N. Sunil Kumar, G. B. Arjun Kumar, R. Gatti, S. Santosh Kumar, D. A. Bhyratae, and S. Palle, “Design and implementation of auto encoder based bio medical signal transmission to optimize power using convolution neural network,” Neuroscience Informatics, vol. 3, no. 1, p. 100121, Mar. 2023, doi: 10.1016/j.neuri.2023.100121.
S. A. Holguin-Garcia et al., “A comparative study of CNN-capsule-net, CNN-transformer encoder, and Traditional machine learning algorithms to classify epileptic seizure,” BMC Med Inform Decis Mak, vol. 24, no. 1, 2024, doi: 10.1186/s12911-024-02460-z.
O. B. Ozdemir and A. Koz, “3D-CNN and Autoencoder-Based Gas Detection in Hyperspectral Images,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, 2023, doi: 10.1109/JSTARS.2023.3235781.
A. Yasar, “Analysis of selected deep features with CNN-SVM-based for bread wheat seed classification,” European Food Research and Technology, vol. 250, no. 6, 2024, doi: 10.1007/s00217-024-04488-x.
A. I. Jabbooree, L. M. Khanli, P. Salehpour, and S. Pourbahrami, “Geometrical Facial Expression Recognition Approach Based on Fusion CNN-SVM,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 1, 2024, doi: 10.22266/ijies2024.0229.40.
R. F. Alya, M. Wibowo, and P. Paradise, “Classification of Batik Motif Using Transfer Learning on Convolutional Neural Network (CNN),” Jurnal Teknik Informatika (Jutif), vol. 4, no. 1, 2023, doi: 10.52436/1.jutif.2023.4.1.564.
M. M. A. Wona et al., “Klasifikasi Batik Indonesia Menggunakan Convolutional Neural Network (CNN),” JURTI, vol. 7, no. 2, pp. 172–179, 2023, [Online]. Available: https://www.kaggle.com/datasets/dionisiusdh/indonesianbatik-motifs.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Faqih Dzulqarnain, Abdul Fadlil, Imam Riadi

This work is licensed under a Creative Commons Attribution 4.0 International License.