Detection of Endangered Indonesian Species Across Multiple Taxonomic Classes Using Faster R-CNN
DOI:
https://doi.org/10.52436/1.jutif.2025.6.6.4793Keywords:
Deep Learning, Detection, Endangered Species, Faster R-CNN, FPN, Transfer LearningAbstract
Indonesia’s rich biodiversity includes many endangered species across various taxonomic groups. This study presents a Faster R-CNN deep learning model to detect ten endangered Indonesian species, covering birds, reptiles, mammals, and fishes. A custom dataset with diverse images was annotated and used to train the model with transfer learning on the Detectron2 framework. Evaluation using COCO metrics yielded an average precision (AP) of 54.93%, with the Komodo Dragon achieving the highest AP (82.57%) and Wallace’s Standardwing the lowest (30.82%). The model excels at detecting larger, distinct species but has difficulty with smaller or camouflaged ones in complex environments. Training results confirm that transfer learning aids performance despite limited data. Analysis of misclassifications suggests the need for additional data modalities or context to improve accuracy. This work highlights the potential of Faster R-CNN for automated endangered species monitoring in Indonesia and recommends dataset expansion, data augmentation, and model refinement to enhance detection, particularly for challenging species. This study contributes to computer vision applications in conservation, particularly within low-resource biodiversity contexts.
Downloads
References
I. Ardiantiono, I. M. R. Pinondang, D. S. Chandradewi, G. Semiadi, F. Pattiselanno, J. Supriatna, J. S. Tasirin, N. L. Winarni, M. Voigt, J. W. Bull, T. Humle, N. J. Deere, and M. J. Struebig, “Insights from 20 years of mammal population research in Indonesia,” Oryx, vol. 58, no. 4, pp. 485–492, Jul. 2024. DOI: 10.1017/S0030605323001539.
Y. Purwanto, E. Sukara, P. S. Ajiningrum, and D. Priatna, "Cultural diversity and biodiversity as foundation of sustainable development," Indonesian Journal of Applied Environmental Science and Technology (InJAST), vol. 2, no. 2, pp. 90–97, 2021. [Online]. Available: https://journal.unpak.ac.id/index.php/InJAST/article/view/1976
A. Eryan, “Review on Illegal Wildlife Trade Provisions in Indonesia: Cost‑Benefit Analysis and Law Enforcement,” Indonesian Journal of International Law, vol. 21, no. 5, Art. 4, 2024. DOI: 10.17304/ijil.vol21.5.1877. [Online]. Available: https://scholarhub.ui.ac.id/ijil/vol21/iss5/4
D. Velasco‑Montero, J. Fernández‑Berni, R. Carmona‑Galán, A. Sanglas, and F. Palomares, “Reliable and efficient integration of AI into camera traps for smart wildlife monitoring based on continual learning,” Ecological Informatics, vol. 83, p. 102815, 2024. DOI: 10.1016/j.ecoinf.2024.102815.
L. Jeantet and E. Dufourq, "Improving deep learning acoustic classifiers with contextual information for wildlife monitoring," Ecological Informatics, vol. 77, p. 102256, 2023, doi: 10.1016/j.ecoinf.2023.102256.
F. Gao, T. Liu, H. Wang, H. Shi, C. Yuan, S. Song, B. HaSi, and X. Wu, "Spatial and temporal variation patterns of summer grazing trajectories of Sunit sheep," Ecological Informatics, vol. 78, p. 102322, 2023, doi: 10.1016/j.ecoinf.2023.102322.
A. Magdy, M. S. Moustafa, H. M. Ebied, and M. F. Tolba, "Lightweight Faster R-CNN for object detection in optical remote sensing images," Scientific Reports, vol. 15, no. 1, p. 16163, May 2025. doi: 10.1038/s41598-025-99242-y.
S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," arXiv preprint arXiv:1506.01497, 2015, doi: 10.48550/arXiv.1506.01497.
X. Wang, Y. Zhang, and Z. Li, "Deep learning-based object detection for endangered species in satellite imagery," Applied Sciences, vol. 14, no. 11, p. 4443, 2024. [Online]. Available: https://doi.org/10.3390/app14114443.
Y. Zhang, D. Liu, and Q. He, "Remote sensing and machine learning for monitoring biodiversity," Remote Sensing, vol. 16, no. 8, p. 1350, 2023. [Online]. Available: https://doi.org/10.3390/rs16081350.
M. Liu, Y. Chen, and X. Zhao, "Spatial-temporal features for object detection in complex environments," International Journal of Applied Geospatial Research, vol. 28, no. 2, pp. 103–110, 2024. [Online]. Available: https://doi.org/10.1016/j.jag.2024.103732.
Y. Hu, J. Wang, and Z. Zhang, "Biodiversity monitoring using high-resolution aerial imagery and deep learning models," Ecological Informatics, vol. 23, pp. 102–115, 2023. [Online]. Available: https://doi.org/10.1016/j.ecoinf.2023.102383.
R. Jones, S. Smith, and L. Thomas, "Agricultural impact on endangered species distribution and the integration of environmental data," Agronomy, vol. 14, no. 10, p. 2194, 2024. [Online]. Available: https://doi.org/10.3390/agronomy14102194.
H. Li, W. Zhang, and S. Liu, "Advanced object detection for endangered species in remote sensing data using Faster R-CNN," Entropy, vol. 24, no. 3, p. 353, 2023. [Online]. Available: https://doi.org/10.3390/e24030353.
iNaturalist, "Endangered Species Observations for Place in Indonesia," accessed May 27, 2025. [Online]. Available: https://www.inaturalist.org/observations?place_id=6966&view=species.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in European Conference on Computer Vision (ECCV), Springer, 2014, pp. 740–755.
Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” Facebook AI Research, 2019. [Online]. Available: https://github.com/facebookresearch/detectron2.
E. Karakullukcu, "Leveraging convolutional neural networks for image-based classification of feature matrix data," Expert Systems with Applications, vol. 281, p. 127625, 2025, doi: 10.1016/j.eswa.2025.127625.
R. Shinoda and K. Shiohara, "PetFace: A Large-Scale Dataset and Benchmark for Animal Identification," in Computer Vision – ECCV 2024, Springer Nature Switzerland, Cham, 2025, pp. 19–36, doi: 10.1007/978-3-031-72649-1_2.
Y. Fang, Y. Liu, Y. Liu, and Q. Yang, "Data Augmentation for Object Detection via Controllable Diffusion Models," in Proc. IEEE Winter Conf. on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2024. [Online]. Available: https://openaccess.thecvf.com/content/WACV2024/papers/
J. Wu, Y. Chao, and J. Liu, "Enhancing Multi-modal Object Detection with Data Augmentation, Focal Loss, and Model Ensembling," in Pattern Recognition. ICPR 2024 International Workshops and Challenges, vol. 15617, Cham: Springer, 2025. doi: 10.1007/978-3-031-88217-3_21. [Online]. Available: https://doi.org/10.1007/978-3-031-88217-3_21
H. Fujita, M. Itagaki, K. Ichikawa, Y. K. Hooi, K. Kawahara and A. Sarlan, "Fine-tuned Surface Object Detection Applying Pre-trained Mask R-CNN Models," 2020 International Conference on Computational Intelligence (ICCI), Bandar Seri Iskandar, Malaysia, 2020, pp. 17-22, doi: 10.1109/ICCI51257.2020.9247666.
I. Iqra and K. J. Giri, "SO-YOLOv8: A novel deep learning-based approach for small object detection with YOLO beyond COCO," Expert Systems with Applications, vol. 280, p. 127447, 2025, doi: 10.1016/j.eswa.2025.127447. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417425010693.
M. J. Mubarok, E. M. Yuniarno, Y. O. Sihombing and M. H. Purnomo, "Semantic Segmentation of Sentinel-2 Satellite Image for Rice Growth Phase Classification Using Deep Learning," 2024 IEEE International Conference on Imaging Systems and Techniques (IST), Tokyo, Japan, 2024, pp. 1-6, doi: 10.1109/IST63414.2024.10759168.
M. Willi, R. T. Pitman, A. W. Cardoso, C. Locke, A. Swanson, A. Boyer, M. Veldthuis, and L. Fortson, "Identifying animal species in camera trap images using deep learning and citizen science," Methods in Ecology and Evolution, vol. 10, no. 1, pp. 80–91, 2019.
BirdLife International, "Leucopsar rothschildi,"The IUCN Red List of Threatened Species, 2021, e.T22710912A183006359. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/22710912/183006359
G. R. Allen and T. J. Donaldson, "Pterapogon kauderni (amended version of 2007 assessment)," The IUCN Red List of Threatened Species, 2025, e.T63572A274966962. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/63572/274966962
J. A. Seminoff, "Chelonia mydas (amended version of 2004 assessment)," The IUCN Red List of Threatened Species, 2023, e.T4615A247654386. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/4615/247654386
BirdLife International, "Pavo muticus," The IUCN Red List of Threatened Species, 2018, e.T22679440A131749282. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/22679440/131749282
T. Jessop, A. Ariefiandy, M. Azmi, C. Ciofi, J. Imansyah, and D. Purwandana, "Varanus komodoensis," The IUCN Red List of Threatened Species, 2021, e.T22884A123633058. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/22884/123633058
BirdLife International, "Macrocephalon maleo," The IUCN Red List of Threatened Species, 2021, e.T22678576A194673255. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/22678576/194673255
B. Russell, "Cheilinus undulatus," The IUCN Red List of Threatened Species, 2004, e.T4592A11023949. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/4592/11023949
M. Ancrenaz, M. Gumal, A. J. Marshall, E. Meijaard, S. A. Wich, and S. Husson, "Pongo pygmaeus (amended version of 2023 assessment)," The IUCN Red List of Threatened Species, 2024, e.T17975A259043172. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/17975/259043172
V. Vaniartha and R. Pollom, "Hippocampus bargibanti," The IUCN Red List of Threatened Species, 2024, e.T10060A250508253. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/10060/250508253
BirdLife International, "Semioptera wallacii," The IUCN Red List of Threatened Species, 2017, e.T22706140A118483106. Accessed: Jun. 17, 2025. [Online]. Available: https://www.iucnredlist.org/species/22706140/118483106
M. A. Tabak et al., "Machine learning to classify animal species in camera trap images: applications in ecology," Methods in Ecology and Evolution, vol. 10, no. 4, pp. 585–590, 2019, doi: 10.1111/2041-210X.13120.
T. Fischer, "Label Studio: Data labeling software for machine learning," Journal of Open Source Software, vol. 6, no. 59, p. 2872, 2021, doi: 10.21105/joss.02872.
K. Lin et al., "Microsoft COCO: Common objects in context," in Proc. European Conference on Computer Vision (ECCV), 2014, pp. 740–755, doi: 10.1007/978-3-319-10602-1_48.
L. Ratner et al., "Snorkel: Rapid training data creation with weak supervision," in Proc. VLDB Endowment, vol. 11, no. 3, pp. 269–282, 2017, doi: 10.14778/3157794.3157809.
J. Krippendorff, Content Analysis: An Introduction to Its Methodology, 3rd ed., Sage Publications, 2012, pp. 221–229.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Moh. Jabir Mubarok, Rizky Fitria Haya, Eka Fitria, Brilian Surya Budi

This work is licensed under a Creative Commons Attribution 4.0 International License.





