Comparison of Time Series Algorithms Using SARIMA and Prophet in Predicting Short-Term Bitcoin Prices
DOI:
https://doi.org/10.52436/1.jutif.2025.6.4.4773Keywords:
Bitcoin, Price Prediction, Prophet, SARIMA, SEMMA, Time SeriesAbstract
Digital finance, particularly Bitcoin, has become a global phenomenon with high volatility, posing great challenges for traders in predicting short-term prices. This study compares the performance of the SARIMA and Prophet algorithms in predicting short-term Bitcoin prices using daily closing price data from October 1, 2014, to October 1, 2024. The study utilizes two different data timeframes, a 10-year dataset (2014-2024) and the last 5 years (2019-2024) for comparative analysis. The SEMMA methodology is used to analyze and compare the two algorithms, which consist of the stages Sample, Explore, Modify, Model, and Assess. The experimental results show that SARIMA provides more stable and consistent results with an MAPE value of 1.24% and RMSE of 896.15 in Scenario 1 and an MAPE value of 1.27% and RMSE of 920.24 in Scenario 2. In contrast, Prophet shows different performance in each scenario. In Scenario 1, Prophet shows optimal results but not so good with an average MAPE of 1.74% and an RMSE value of 1214.86. On the other hand, Prophet showed good performance in Scenario 2 with a lower average MAPE of 0.71% and a smaller RMSE of 489.94, indicating Prophet's ability to handle newer and more dynamic datasets. Both models show their respective advantages; SARIMA is better for long and stable historical data, while Prophet is more effective for shorter and dynamic data. This research provides practical insights for traders and investors in choosing the right prediction model, with results for further study in predicting crypto asset prices.
Downloads
References
S. Otabek and J. Choi, “From Prediction to Profit: A Comprehensive Review of Cryptocurrency Trading Strategies and Price Forecasting Techniques,” IEEE Access, vol. 12, no. June, pp. 87039–87064, 2024, doi: 10.1109/ACCESS.2024.3417449.
L. Jin, B. Zheng, X. Jiang, L. Xiong, J. Zhang, and J. Ma, “Dynamic cross-correlation in emerging cryptocurrency market,” Phys. A Stat. Mech. its Appl., vol. 668, no. April, p. 130568, 2025, doi: 10.1016/j.physa.2025.130568.
N. Ramya, R. Sanjay Roshan, R. Vishal Srinivas, and D. Krishna Prasad, “Crypto-Currency Price Prediction using Machine Learning,” 2022 6th Int. Conf. Trends Electron. Informatics, ICOEI 2022 - Proc., no. Icoei, pp. 1455–1458, 2022, doi: 10.1109/ICOEI53556.2022.9776665.
K. John and J. Li, “Bitcoin price volatility: Effects of retail traders, illegal users, and sentiment,” J. Corp. Financ., vol. 94, no. January, p. 102837, 2025, doi: 10.1016/j.jcorpfin.2025.102837.
T. H. A. Joubert, “Unraveling Bitcoin price unpredictability: The role of hard forks,” Int. Rev. Financ. Anal., vol. 96, no. PB, p. 103662, 2024, doi: 10.1016/j.irfa.2024.103662.
X. He, Y. Li, and H. Li, “Revolutionizing Bitcoin price forecasts: A comparative study of advanced hybrid deep learning architectures,” Financ. Res. Lett., vol. 69, no. PA, p. 106136, 2024, doi: 10.1016/j.frl.2024.106136.
R. Dubey and D. Enke, “Bitcoin price direction prediction using on-chain data and feature selection,” Mach. Learn. with Appl., vol. 20, no. May, p. 100674, 2025, doi: 10.1016/j.mlwa.2025.100674.
S. Long, Y. Xie, Z. Zhou, B. Lucey, and A. Urquhart, “From whales to waves: Social media sentiment, volatility, and whales in cryptocurrency markets,” Br. Account. Rev., no. July 2024, pp. 1–16, 2025, doi: 10.1016/j.bar.2025.101682.
Z. I. Ramadhan and H. Widiputra, “Comparative Analysis of Recurrent Neural Network Models Performance in Predicting Bitcoin Prices,” J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 10, no. 3, pp. 377–388, 2024, [Online]. Available: http://jurnal.iaii.or.id
O. Ahmed Al-Zakhali and A. M. Abdulazeez, “Comparative Analysis of Machine Learning and Deep Learning Models for Bitcoin Price Prediction,” Indones. J. Comput. Sci., vol. 13, no. 1, pp. 407–419, 2024, doi: 10.33022/ijcs.v13i1.3722.
N. Tripathy, S. Hota, D. Singh, B. M. Acharya, and S. K. Nayak, “A comprehensive analysis of Bitcoin volatility forecasting using time-series econometric models,” Appl. Soft Comput., vol. 178, no. April, p. 113339, 2025, doi: 10.1016/j.asoc.2025.113339.
A. Isufaj, C. De Castro Martins, M. Cavazza, and H. Prendinger, “Applying time delay convergent cross mapping to Bitcoin time series,” Expert Syst. Appl., vol. 277, no. January, p. 127125, 2025, doi: 10.1016/j.eswa.2025.127125.
V. Mizdrakovic et al., “Forecasting bitcoin: Decomposition aided long short-term memory based time series modeling and its explanation with Shapley values,” Knowledge-Based Syst., vol. 299, no. April, p. 112026, 2024, doi: 10.1016/j.knosys.2024.112026.
Y. Indulkar, “Time series analysis of cryptocurrencies using deep learning fbprophet,” 2021 Int. Conf. Emerg. Smart Comput. Informatics, ESCI 2021, pp. 306–311, 2021, doi: 10.1109/ESCI50559.2021.9397004.
Q. Phung Duy, O. Nguyen Thi, P. H. Le Thi, H. D. Pham Hoang, K. L. Luong, and K. N. Nguyen Thi, “Estimating and forecasting bitcoin daily prices using ARIMA-GARCH models,” Bus. Anal. J., 2024, doi: 10.1108/baj-05-2024-0027.
K. Dhinakaran, P. Baby Shamini, J. Divya, C. Indhumathi, and R. Asha, “Cryptocurrency Exchange Rate Prediction using ARIMA Model on Real Time Data,” Proc. Int. Conf. Electron. Renew. Syst. ICEARS 2022, no. Icears, pp. 914–917, 2022, doi: 10.1109/ICEARS53579.2022.9751925.
A. Ibrahim, R. Kashef, and L. Corrigan, “Predicting market movement direction for bitcoin: A comparison of time series modeling methods,” Comput. Electr. Eng., vol. 89, no. November 2020, p. 106905, 2021, doi: 10.1016/j.compeleceng.2020.106905.
K. Kashif and R. Ślepaczuk, “LSTM-ARIMA as a hybrid approach in algorithmic investment strategies,” Knowledge-Based Syst., vol. 320, no. July 2024, p. 113563, 2025, doi: 10.1016/j.knosys.2025.113563.
U. Sampat Kumar, S. P. Aanandhi, S. P. Akhilaa, V. Vardarajan, and M. Sathiyanarayanan, “Cryptocurrency Price Prediction using Time Series Forecasting (ARIMA),” 2021 4th Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2021, pp. 598–602, 2021, doi: 10.1109/ISRITI54043.2021.9702842.
J. Zhu, “Bitcoin Price Prediction: ARIMA & SARIMA vs Linear Regression,” Adv. Econ. Manag. Polit. Sci., vol. 61, no. 1, pp. 47–54, 2023, doi: 10.54254/2754-1169/61/20230776.
S. Periketi, R. Kulkarni, and U. N. Dulhare, “LSTM and Prophet Model Fusion Framework for Bitcoin Candlestick Visualization and Price Prediction Forecasting,” Proc. 17th INDIACom; 2023 10th Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2023, pp. 1190–1194, 2023.
K. Ramani, M. Jahnavi, P. J. Reddy, P. Venkatachakravarthi, P. Meghanath, and S. K. Imran, “Prediction of Bitcoin Price through LSTM, ARIMA, XGBoost, Prophet and Sentiment Analysis on Dynamic Streaming Data,” 2023 9th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2023, vol. 1, pp. 1514–1518, 2023, doi: 10.1109/ICACCS57279.2023.10113014.
M. D. Angelo, I. Fadhiilrahman, and Y. Purnama, “Comparative Analysis of ARIMA and Prophet Algorithms in Bitcoin Price Forecasting,” Procedia Comput. Sci., vol. 227, pp. 490–499, 2023, doi: 10.1016/j.procs.2023.10.550.
P. Kodicherla and N. Velagandula, “Univariate Time Series Analysis of Cryptocurrency Data using Prophet, LSTM and XGBoost,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 12, pp. 2005–2013, 2022, doi: 10.22214/ijraset.2022.48411.
K. Nigam and M. Singh, “Prediction of the Variation in Price of Bitcoin Using Machine Learning,” Proc. Int. Conf. Contemp. Comput. Informatics, IC3I 2023, vol. 6, pp. 344–347, 2023, doi: 10.1109/IC3I59117.2023.10397988.
T. Toharudin, R. S. Pontoh, R. E. Caraka, S. Zahroh, Y. Lee, and R. C. Chen, “Employing long short-term memory and Facebook prophet model in air temperature forecasting,” Commun. Stat. Simul. Comput., vol. 52, no. 2, pp. 279–290, 2023, doi: 10.1080/03610918.2020.1854302.
J. Cheng, S. Tiwari, D. Khaled, M. Mahendru, and U. Shahzad, “Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models,” Technol. Forecast. Soc. Change, vol. 198, no. October 2023, p. 122938, 2024, doi: 10.1016/j.techfore.2023.122938.
K. Albeladi, B. Zafar, and A. Mueen, “A Novel Deep-Learning Based Approach for Time Series Forecasting Using SARIMA, Neural Prophet and Fb Prophet,” 2023, doi: 10.20944/preprints202311.0794.v1.
R. Maurya, D. Kaur, A. P. Singh, and S. Ranjan, “Stock Price Prediction Using Time Series,” Commun. Comput. Inf. Sci., vol. 2053 CCIS, pp. 309–320, 2024, doi: 10.1007/978-3-031-56700-1_25.
A. F. Hamdani, D. Swanjaya, and R. Helilintar, “Facebook Prophet Model with Bayesian Optimization for USD Index Prediction,” JUITA J. Inform., vol. 11, no. 2, p. 293, 2023, doi: 10.30595/juita.v11i2.17880.
E. Vivas, H. Allende-Cid, and R. Salas, “A systematic review of statistical and machine learning methods for electrical power forecasting with reported mape score,” Entropy, vol. 22, no. 12, pp. 1–24, 2020, doi: 10.3390/e22121412.
T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-15-5481-2022.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Zidan Brilliant, Triyanna Widiyaningtyas, Wahyu Caesarendra

This work is licensed under a Creative Commons Attribution 4.0 International License.