REACH: A Reinforcement Learning-Based Protocol for Adaptive Cluster Head Selection in Wireless Sensor Networks

Authors

  • Novi Trisman Hadi Faculty of Computer Science, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia
  • Supriyanto Informatics Study Program, Universitas Sultan Ageng Tirtayasa, Indonesia
  • I Wayan Rangga Pinastawa Faculty of Computer Science, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia
  • Radinal Setyadinsa Faculty of Computer Science, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.5.4754

Keywords:

Adaptive Clustering, Energy Efficiency, Latency, Routing, REACH, WSN

Abstract

Wireless Sensor Networks (WSNs) are widely used in critical applications such as environmental monitoring and the Internet of Things (IoT), where energy efficiency and minimal latency are critical for network robustness and effectiveness. Conventional clustering and routing methods often struggle to adapt to fluctuating network conditions, resulting in suboptimal energy usage and increased latency. This study introduces REACH, an adaptive clustering and routing algorithm that leverages reinforcement learning to optimize energy consumption and reduce latency in WSNs. The proposed protocol dynamically selects cluster heads based on real-time network characteristics, including node density and energy levels, enhancing adaptability and robustness. Simulation results using MATLAB show significant improvements, with energy consumption reduced by 35% and latency reduced by 40% compared to traditional protocols such as LEACH and HEED. These findings suggest that reinforcement learning can significantly improve the performance of WSNs by extending the network lifetime and minimizing data transmission delay. This research contributes to the development of intelligent network protocols, offering practical insights into the integration of reinforcement learning for sustainable and scalable WSN design.

Downloads

Download data is not yet available.

References

Majid, M., Habib, S., Javed, A. R., Rizwan, M., Srivastava, G., Gadekallu, T. R., & Lin, J. C.-W. (2022). Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors, 22(6), 2087. https://doi.org/10.3390/s22062087

K. Gulati, R. S. Kumar Boddu, D. Kapila, S. L. Bangare, N. Chandnani, and G. Saravanan, “A review paper on wireless sensor network techniques in Internet of Things (IoT),” Mater. Today Proc., vol. 51, pp. 161–165, 2022, doi: https://doi.org/10.1016/j.matpr.2021.05.067.

M. N. Mowla, N. Mowla, A. F. M. S. Shah, K. M. Rabie, and T. Shongwe, “Internet of Things and Wireless Sensor Network for Smart Agriculture Applications: A Survey,” IEEE Access, vol. 11, no. November, pp. 145813–145852, 2023, doi: 10.1109/ACCESS.2023.3346299.

S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0268-2.

P. Prabu, A. N. Ahmed, K. Venkatachalam, S. Nalini, and R. Manikandan, “Energy efficient data collection in sparse sensor networks using multiple Mobile Data Patrons,” Comput. Electr. Eng., vol. 87, p. 106778, 2020, doi: https://doi.org/10.1016/j.compeleceng.2020.106778.

N. T. Hadi, M. P. Muslim, and N. Irzavika, “Pengembangan Metode Routing Menggunakan Mekanisme Swing Routing dengan Penanganan Routing Hole Sebagai Peningkatan Kinerja Wireless Sensor Network,” Techno.Com, vol. 22, no. 4, pp. 822–832, Nov. 2023, doi: 10.33633/tc.v22i4.8965.

F. Engmann, F. A. Katsriku, J. D. Abdulai, K. S. Adu-Manu, and F. K. Banaseka, “Prolonging the Lifetime of Wireless Sensor Network: A Review of Current Techniques,” Wirel. Commun. Mob. Comput., vol. 2018, 2018, doi: 10.1155/2018/8035065.

S. Naskar, “Wireless Sensor Network Challenges and Solutions,” in Wireless Sensor Network, J. Sen, M. Yi, F. Niu, and H. Wu, Eds., Rijeka: IntechOpen, 2023, ch. 5. doi: 10.5772/intechopen.109238.

H. N. S. Aldin, M. R. Ghods, F. Nayebipour, and M. N. Torshiz, “A comprehensive review of energy harvesting and routing strategies for IoT sensors sustainability and communication technology,” Sensors Int., vol. 5, p. 100258, 2024, doi: https://doi.org/10.1016/j.sintl.2023.100258.

A. Shahraki, A. Taherkordi, Ø. Haugen, and F. Eliassen, “Clustering objectives in Wireless Sensor Network: A survey and research direction analysis,” Comput. Networks, vol. 180, p. 107376, 2020, doi: https://doi.org/10.1016/j.comnet.2020.107376.

M. K. Alam, A. A. Aziz, S. A. Latif, and A. Awang, “Error-Aware Data Clustering for In-Network Data Reduction in Wireless Sensor Network,” Sensors, vol. 20, no. 4, 2020, doi: 10.3390/s20041011.

V. Cherappa, T. Thangarajan, S. S. Meenakshi Sundaram, F. Hajjej, A. K. Munusamy, and R. Shanmugam, “Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Network,” Sensors, vol. 23, no. 5, 2023, doi: 10.3390/s23052788.

A. G.R. and Gowrishankar, “Energy efficient clustering and routing in a Wireless Sensor Network,” Procedia Comput. Sci., vol. 134, pp. 178–185, 2018, doi: https://doi.org/10.1016/j.procs.2018.07.160.

M. Hosseinzadeh et al., “A cluster-based trusted routing method using fire hawk optimizer (FHO) in Wireless Sensor Network (WSNs),” Sci. Rep., vol. 13, no. 1, pp. 1–20, 2023, doi: 10.1038/s41598-023-40273-8.

E. Heidari, A. Movaghar, H. Motameni, and B. Barzegar, “A novel approach for clustering and routing in WSN using genetic algorithm and equilibrium optimizer,” Int. J. Commun. Syst., vol. 35, no. 10, p. e5148, 2022, doi: https://doi.org/10.1002/dac.5148.

M. A. Alharbi, M. Kolberg, and M. Zeeshan, “Towards improved clustering and routing protocol for Wireless Sensor Network,” Eurasip J. Wirel. Commun. Netw., vol. 2021, no. 1, 2021, doi: 10.1186/s13638-021-01911-9.

B.-S. Kim, K.-I. Kim, B. Shah, F. Chow, and K. H. Kim, “Wireless Sensor Network for Big Data Systems,” Sensors, vol. 19, no. 7, 2019, doi: 10.3390/s19071565.

S. Abdulmalek et al., “IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review,” Healthc., vol. 10, no. 10, 2022, doi: 10.3390/healthcare10101993.

E. A. Evangelakos, D. Kandris, D. Rountos, G. Tselikis, and E. Anastasiadis, “Energy Sustainability in Wireless Sensor Network: An Analytical Survey,” J. Low Power Electron. Appl., vol. 12, no. 4, p. 65, Dec. 2022, doi: 10.3390/jlpea12040065.

N. T. Hadi and Wibisono, “A Swing Routing Approach to Improve Performance of Shortest Geographical Routing Protocol for Wireless Sensor Network,” in 2019 International Conference on Information and Communications Technology (ICOIACT), IEEE, Jul. 2019, pp. 291–296. doi: 10.1109/ICOIACT46704.2019.8938581.

Moorthi and R. Thiagarajan, “Energy consumption and network connectivity based on Novel-LEACH-POS protocol networks,” Comput. Commun., vol. 149, pp. 90–98, Jan. 2020, doi: 10.1016/j.comcom.2019.10.006.

S. S. Saleh, T. F. Mabrouk, and R. A. Tarabishi, “An improved energy-efficient head election protocol for clustering techniques of wireless sensor network (June 2020),” Egypt. Informatics J., vol. 22, no. 4, pp. 439–445, Dec. 2021, doi: 10.1016/j.eij.2021.01.003.

M. M. Afsar and M. H. Tayarani-N, “Clustering in sensor networks: A literature survey,” J. Netw. Comput. Appl., vol. 46, pp. 198–226, 2014, doi: 10.1016/j.jnca.2014.09.005.

S. Sharmin, I. Ahmedy, and R. Md Noor, “An Energy-Efficient Data Aggregation Clustering Algorithm for Wireless Sensor Network Using Hybrid PSO,” Energies, vol. 16, no. 5, p. 2487, Mar. 2023, doi: 10.3390/en16052487.

Z. Ullah, L. Mostarda, R. Gagliardi, D. Cacciagrano, and F. Corradini, “A comparison of HEED based clustering algorithms - Introducing ER-HEED,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, vol. 2016-May, pp. 339–345, 2016, doi: 10.1109/AINA.2016.87.

X. Lu et al., “ASHEED: Attention-shifting mechanism for depolarization of cluster head energy consumption in the smart sensing system,” Expert Syst. Appl., vol. 203, p. 117524, Oct. 2022, doi: 10.1016/j.eswa.2022.117524.

O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Trans. Mob. Comput., vol. 3, no. 4, pp. 366–379, 2004, doi: 10.1109/TMC.2004.41.

M. Arghavani, M. Esmaeili, M. Esmaeili, F. Mohseni, and A. Arghavani, “Optimal energy aware clustering in circular Wireless Sensor Network,” Ad Hoc Networks, vol. 65, pp. 91–98, Oct. 2017, doi: 10.1016/j.adhoc.2017.07.006.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: A Survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, May 1996, doi: 10.1613/jair.301.

A. K. Shakya, G. Pillai, and S. Chakrabarty, “Reinforcement learning algorithms: A brief survey,” Expert Syst. Appl., vol. 231, p. 120495, 2023, doi: https://doi.org/10.1016/j.eswa.2023.120495.

T. M. Inc., “MATLAB version: 9.13.0 (R2022b),” 2022, The MathWorks Inc., Natick, Massachusetts, United States. [Online]. Available: https://www.mathworks.com

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, IEEE Comput. Soc, p. 10. doi: 10.1109/HICSS.2000.926982.

Additional Files

Published

2025-10-22

How to Cite

[1]
N. T. Hadi, S. Supriyanto, I. W. R. . Pinastawa, and R. Setyadinsa, “REACH: A Reinforcement Learning-Based Protocol for Adaptive Cluster Head Selection in Wireless Sensor Networks”, J. Tek. Inform. (JUTIF), vol. 6, no. 5, pp. 3697–3706, Oct. 2025.