Implementation of Ant Colony Optimization in Obesity Level Classification Using Random Forest
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.4696Keywords:
Ant Colony Optimization, Feature Selection, Obesity, Random ForestAbstract
Obesity is a pressing global health issue characterized by excessive body fat accumulation and associated risks of chronic diseases. This study investigates the integration of Ant Colony Optimization (ACO) for feature selection in obesity-level classification using Random Forests. Results demonstrate that feature selection significantly improves classification accuracy, rising from 94.49% to 96.17% when using ten features selected by ACO. Despite limitations, such as challenges in tuning parameters like alpha (α), beta (β), and evaporation rate in ACO techniques, the study provides valuable insights into developing a more efficient obesity classification system. The proposed approach outperforms other algorithms, including KNN (78.98%), CNN (82.00%), Decision Tree (94.00%), and MLP (95.06%), emphasizing the importance of feature selection methods like ACO in enhancing model performance. This research addresses a critical gap in intelligent healthcare systems by providing the first comprehensive study of ACO-based feature selection specifically for obesity classification, contributing significantly to medical informatics and computer science. The findings have immediate practical implications for developing automated diagnostic tools that can assist healthcare professionals in early obesity detection and intervention, potentially reducing healthcare costs through improved diagnostic efficiency and supporting digital health transformation in clinical settings. Furthermore, the study highlights the broader applicability of ACO in various classification tasks, suggesting that similar techniques could be used to address other complex health issues, ultimately improving diagnostic accuracy and patient outcomes.
Downloads
References
I. M. Putra, I. Tahyudin, H. A. A. Rozaq, A. Y. Syafa’At, R. Wahyudi, and E. Winarto, “Classification analysis of COVID19 patient data at government hospital of banyumas using machine learning,” in 2021 2nd International Conference on Smart Computing and Electronic Enterprise: Ubiquitous, Adaptive, and Sustainable Computing Solutions for New Normal, ICSCEE 2021, Jun. 2021, pp. 271–274, doi: 10.1109/ICSCEE50312.2021.9498020.
W. H. Organization, “Obesity and Overweight,” WHO, 2024. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed Apr. 07, 2024).
M. Safaei, E. A. Sundararajan, M. Driss, W. Boulila, and A. Shapi’i, “A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity,” Comput. Biol. Med., vol. 136, p. 104754, Sep. 2021, doi: 10.1016/j.compbiomed.2021.104754.
R. Kaur, R. Kumar, and M. Gupta, “Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence,” Endocrine, vol. 78, no. 3, pp. 458–469, Oct. 2022, doi: 10.1007/s12020-022-03215-4.
S. Pfeifflé et al., “Current Recommendations for Nutritional Management of Overweight and Obesity in Children and Adolescents: A Structured Framework,” Nutrients, vol. 11, no. 2, p. 362, Feb. 2019, doi: 10.3390/nu11020362.
Z. Helforoush and H. Sayyad, “Prediction and classification of obesity risk based on a hybrid metaheuristic machine learning approach,” Front. Big Data, vol. 7, Sep. 2024, doi: 10.3389/fdata.2024.1469981.
M. S. Sirsat, E. Fermé, and J. Câmara, “Machine Learning for Brain Stroke: A Review,” J. Stroke Cerebrovasc. Dis., vol. 29, no. 10, 2020, doi: 10.1016/j.jstrokecerebrovasdis.2020.105162.
L. Huang et al., “The Role of Artificial Intelligence in Obesity Risk Prediction and Management: Approaches, Insights, and Recommendations,” Medicina (B. Aires)., vol. 61, no. 2, p. 358, Feb. 2025, doi: 10.3390/medicina61020358.
L. M. Dang, K. Min, H. Wang, M. J. Piran, C. H. Lee, and H. Moon, “Sensor-based and vision-based human activity recognition: A comprehensive survey,” Pattern Recognit., vol. 108, p. 107561, Dec. 2020, doi: 10.1016/j.patcog.2020.107561.
S. A. Alowais et al., “Revolutionizing healthcare: the role of artificial intelligence in clinical practice,” BMC Med. Educ., vol. 23, no. 1, p. 689, Sep. 2023, doi: 10.1186/s12909-023-04698-z.
A. M. S. I. Dewi and I. B. G. Dwidasmara, “Implementation of the K-Nearest Neighbor (KNN) Algorithm for Classification of Obesity Levels,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 2, p. 277, 2020, doi: 10.24843/jlk.2020.v09.i02.p15.
M. Kıvrak, “Deep Learning-Based Prediction of Obesity Levels According to Eeating Habits and Physical Condition,” J. Cogn. Syst., vol. 6, no. 1, pp. 24–27, Jun. 2021, doi: 10.52876/jcs.939875.
M. S. Devi, P. S. Ramesh, A. Joshi, K. Maithili, and A. P. Chand, “Probable Deviation Outlier-Based Classification of Obesity with Eating Habits and Physical Condition,” in Intelligent Manufacturing and Energy Sustainability, Springer Singapore, 2023, pp. 81–93.
A. Alqahtani, F. Albuainin, R. Alrayes, N. Al Muhanna, E. Alyahyan, and E. Aldahasi, “Obesity Level Prediction Based on Data Mining Techniques,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 21, no. 3, p. 103, 2021, doi: 10.22937/IJCSNS.2021.21.3.14.
M. Z. Alam, M. S. Rahman, and M. S. Rahman, “A Random Forest based predictor for medical data classification using feature ranking,” Informatics Med. Unlocked, vol. 15, p. 100180, 2019, doi: 10.1016/j.imu.2019.100180.
A. Sarica, A. Cerasa, and A. Quattrone, “Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review,” Front. Aging Neurosci., vol. 9, Oct. 2017, doi: 10.3389/fnagi.2017.00329.
P. A. Balaji and V. Sugumaran, “Fault detection of automobile suspension system using decision tree algorithms: A machine learning approach,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 095440892311526, Jan. 2023, doi: 10.1177/09544089231152698.
V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” J. Supercomput., vol. 77, no. 5, pp. 5198–5219, May 2021, doi: 10.1007/s11227-020-03481-x.
E. Battistella, D. Ghiassian, and A.-L. Barabási, “Improving the performance and interpretability on medical datasets using graphical ensemble feature selection,” Bioinformatics, vol. 40, no. 6, Jun. 2024, doi: 10.1093/bioinformatics/btae341.
D. S. Khafaga, E.-S. M. El-kenawy, F. Alrowais, S. Kumar, A. Ibrahim, and A. A. Abdelhamid, “Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets,” Comput. Mater. Contin., vol. 74, no. 2, pp. 4027–4041, 2023, doi: 10.32604/cmc.2023.033039.
S.-C. Lu, C. L. Swisher, C. Chung, D. Jaffray, and C. Sidey-Gibbons, “On the importance of interpretable machine learning predictions to inform clinical decision making in oncology,” Front. Oncol., vol. 13, Feb. 2023, doi: 10.3389/fonc.2023.1129380.
C. Liu et al., “An improved heuristic mechanism ant colony optimization algorithm for solving path planning,” Knowledge-Based Syst., vol. 271, p. 110540, Jul. 2023, doi: 10.1016/j.knosys.2023.110540.
D. Yilmaz Eroglu and U. Akcan, “An Adapted Ant Colony Optimization for Feature Selection,” Appl. Artif. Intell., vol. 38, no. 1, Dec. 2024, doi: 10.1080/08839514.2024.2335098.
M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 26, no. 1, pp. 29–41, Feb. 1996, doi: 10.1109/3477.484436.
K. Minari and D. P. Rini, “Optimasi Algoritma Naive Bayes Menggunakan Ant Colony Optimization untuk Klasifikasi Data Penderita Penyakit Stroke,” Repository UNSRI, 2023. https://repository.unsri.ac.id/137557/ (accessed Apr. 07, 2024).
F. M. Palechor and A. de la H. Manotas, “Obesity or CVD Risk Dataset,” Kaggle, 2023. https://www.kaggle.com/datasets/aravindpcoder/obesity-or-cvd-risk-classifyregressorcluster (accessed Apr. 07, 2024).
K. P. N. V Satya Sree, J. Karthik, C. Niharika, P. V. V. S. Srinivas, N. Ravinder, and C. Prasad, “Optimized Conversion of Categorical and Numerical Features in Machine Learning Models,” in 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Nov. 2021, pp. 294–299, doi: 10.1109/I-SMAC52330.2021.9640967.
M. K. Dahouda and I. Joe, “A Deep-Learned Embedding Technique for Categorical Features Encoding,” IEEE Access, vol. 9, pp. 114381–114391, 2021, doi: 10.1109/ACCESS.2021.3104357.
K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, 2022, doi: 10.1016/j.gltp.2022.04.020.
D. Rastogi, P. Johri, V. Tiwari, and A. A. Elngar, “Multi-class classification of brain tumour magnetic resonance images using multi-branch network with inception block and five-fold cross validation deep learning framework,” Biomed. Signal Process. Control, vol. 88, p. 105602, Feb. 2024, doi: 10.1016/j.bspc.2023.105602.
M. Gholizadeh, R. Saeedi, A. Bagheri, and M. Paeezi, “Machine learning-based prediction of effluent total suspended solids in a wastewater treatment plant using different feature selection approaches: A comparative study,” Environ. Res., vol. 246, p. 118146, Apr. 2024, doi: 10.1016/j.envres.2024.118146.
D. S. Pandey, H. Raza, and S. Bhattacharyya, “Development of explainable AI-based predictive models for bubbling fluidised bed gasification process,” Fuel, vol. 351, p. 128971, Nov. 2023, doi: 10.1016/j.fuel.2023.128971.
M. Scianna, “The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems,” Math. Comput. Simul., vol. 218, pp. 357–382, Apr. 2024, doi: 10.1016/j.matcom.2023.12.003.
N. Kumari and D. P. Acharjya, “Data classification using rough set and bioinspired computing in healthcare applications - an extensive review,” Multimed. Tools Appl., vol. 82, no. 9, pp. 13479–13505, Apr. 2023, doi: 10.1007/s11042-022-13776-1.
S. Gite et al., “Textual Feature Extraction Using Ant Colony Optimization for Hate Speech Classification,” Big Data Cogn. Comput., vol. 7, no. 1, p. 45, Mar. 2023, doi: 10.3390/bdcc7010045.
B. Lammel, K. Gryzlak, R. Dornberger, and T. Hanne, “An ant colony system solving the travelling salesman region problem,” in 2016 4th International Symposium on Computational and Business Intelligence (ISCBI), Sep. 2016, pp. 125–131, doi: 10.1109/ISCBI.2016.7743270.
E. K. Sahin, “Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest,” SN Appl. Sci., vol. 2, no. 7, p. 1308, Jul. 2020, doi: 10.1007/s42452-020-3060-1.
J. S. Rhodes, A. Cutler, and K. R. Moon, “Geometry- and Accuracy-Preserving Random Forest Proximities,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 9, pp. 10947–10959, Sep. 2023, doi: 10.1109/TPAMI.2023.3263774.
X. Zhou, P. Lu, Z. Zheng, D. Tolliver, and A. Keramati, “Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree,” Reliab. Eng. Syst. Saf., vol. 200, p. 106931, Aug. 2020, doi: 10.1016/j.ress.2020.106931.
P. H. Putra, A. Azanuddin, B. Purba, and Y. A. Dalimunthe, “Random forest and decision tree algorithms for car price prediction,” J. Mat. Dan Ilmu Pengetah. Alam LLDikti Wil. 1, vol. 3, no. 2, pp. 81–89, Apr. 2023, doi: 10.54076/jumpa.v3i2.305.
E. A. Afify, A. Sharaf, and A. E., “Facebook Profile Credibility Detection using Machine and Deep Learning Techniques based on User’s Sentiment Response on Status Message,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 12, 2020, doi: 10.14569/IJACSA.2020.0111273.
M. Mahmud et al., “Implementation of C5.0 Algorithm using Chi-Square Feature Selection for Early Detection of Hepatitis C Disease,” J. Electron. Electromed. Eng. Med. Informatics, vol. 6, no. 2, pp. 116–124, Mar. 2024, doi: 10.35882/jeeemi.v6i2.384.
S. A. Hicks et al., “On evaluation metrics for medical applications of artificial intelligence,” Sci. Rep., vol. 12, no. 1, p. 5979, Apr. 2022, doi: 10.1038/s41598-022-09954-8.
R. Kundu, R. Das, Z. W. Geem, G.-T. Han, and R. Sarkar, “Pneumonia detection in chest X-ray images using an ensemble of deep learning models,” PLoS One, vol. 16, no. 9, p. e0256630, Sep. 2021, doi: 10.1371/journal.pone.0256630.
D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.
A. A. Salih and A. M. Abdulazeez, “Evaluation of Classification Algorithms for Intrusion Detection System: A Review,” J. Soft Comput. Data Min., vol. 02, no. 01, Apr. 2021, doi: 10.30880/jscdm.2021.02.01.004.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Difha Wardana, Irwan Budiman, Fatma Indriani, Dodon Turianto Nugrahadi, Setyo Wahyu Saputro, Hasri Akbar Awal Rozaq, Oktay Yıldız

This work is licensed under a Creative Commons Attribution 4.0 International License.





