Detecting Avocado Freshness In Real-Time: A Yolo-Based Deep Learning Approach
DOI:
https://doi.org/10.52436/1.jutif.2025.6.3.4626Keywords:
Avo Freshify, Butter Avocado, Detection, Freshness, YOLOv8Abstract
The increasing consumption of avocados in Indonesia highlights the need for an effective method to ensure fruit freshness. The main problem lies in the absence of an objective and standardized system for assessing avocado freshness, which may lead to consumer dissatisfaction and food waste. This study aims to address the challenge of identifying avocado freshness to ensure suitability for consumption. Conducted from May 23 to June 5, 2024, the research used butter avocado samples sourced from supermarkets. The method employed is the You Only Look Once version 8 (YOLOv8) deep learning algorithm, known for its real-time object detection capabilities. YOLOv8 offers enhanced performance compared to earlier versions through anchor-free detection, improved speed, and accuracy, making it suitable for fast and reliable freshness detection tasks. Avocados were classified based on estimated spoilage time under room and refrigerator temperatures, ranging from "up to 5 days at room temperature and 14 days in refrigeration" to "not fit for consumption." The model was validated using 120 images categorized into six freshness levels. Evaluation results demonstrated high performance, with 98% accuracy, an F1-Score of 0.978, mAP50 of 0.994, and mAP50-95 of 0.972 after 50 training epochs, confirming the model’s robustness. Real-time tests yielded confidence levels of 96% and 94%, further validating its effectiveness in detecting avocado freshness. To facilitate daily use, a mobile application named Avo Freshify was developed. The app accurately identifies the freshness of avocados and provides valuable information for consumers and sellers. This research contributes to the advancement of artificial intelligence and object detection in food quality control and agricultural technology.
Downloads
References
R. Tandangi, J. P, and L. Lahming, “Modifikasi Lemari Pendingin Mini untuk Mendinginkan Buah Pisang Menggunakan Pasir sebagai Absorben Kalor,” J. Pendidik. Teknol. Pertan., vol. 5, no. 2, pp. 91 – 98, 2019, doi: 10.26858/jptp.v5i2.9937.
Prinzky and C. Lubis, “Klasifikasi Buah Segar dan Busuk Menggunakan Convolutional Neural Network Berbasis Android,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 2, 2022, doi: https://doi.org/10.24912/jiksi.v10i2.22551.
N. S. Sandora, E. Triastutiningsih, and A. Tsani, “Pengendalian Persediaan Buah Segar pada Ritel Modern,” MAHATANI J. Agribisnis (agribus. Agric. Econ. Journal), vol. 6, no. 1, pp. 67–78, 2023, doi: https://doi.org/10.52434/mja.v6i1.2414.
Indonesia Baik, “Buah-Buahan yang Banyak Dihasilkan di Indonesia.” Accessed: Dec. 28, 2024. [Online]. Available: https://www.indonesiabaik.id/infografis/buah-buahan-yang-banyak-dihasilkan-di-indonesia
Pusat Data dan Sistem Informasi Pertanian, “Statistik Konsumsi Pangan 2023,” Kementerian Pertanian, Jakarta, 2023.
A. Zulfatiswada and S. I. Puspikawati, “Uji Kandungan Zat Pengawet Formalin pada Buah Impor di Pasar Tradisional Kabupaten Gresik,” Media Gizi Kesmas, vol. 11, no. 2, pp. 508–513, 2022, doi: https://doi.org/10.20473/mgk.v11i2.2022.508-513.
L. Lusiana, A. Wibowo, and T. K. Dewi, “Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar dan Busuk,” Paspalum J. Ilm. Pertan., vol. 11, no. 1, pp. 123–130, 2023, doi: https://doi.org/10.35138/paspalum.v11i1.489.
I. F. Rahmad and D. I. Gunawan, “Perancangan dan Implementasi Alat Pendeteksi Kesegaran Buah Berbasis Arduino,” J. Mhs. Fak. Tek. dan Ilmu Komput., vol. 1, no. 1, pp. 368–379, 2020.
S. Khalid, H. M. Oqaibi, M. Aqib, and Y. Hafeez, “Small Pests Detection in Field Crops Using Deep Learning Object Detection,” Sustainability, vol. 15, no. 8, 2023, doi: https://doi.org/10.3390/su15086815.
A. J. Sarmah, K. Bhagawati, K. Duwarah, S. D. Purkayastha, A. Boro, and D. Muchahary, “Object Detection and Conversion of Text to Speech for Visually Impaired,” ADBU-Journal Eng. Technol., vol. 12, no. 2, 2023.
C. Jiang et al., “Object Detection from UAV Thermal Infrared Images and Videos Using YOLO Models,” Int. J. Appl. Earth Obs. Geoinf., vol. 112, pp. 1–17, 2022, doi: https://doi.org/10.1016/j.jag.2022.102912.
B. A. A. Sumbodo and A. Rahardian, “Rancang Bangun Sistem Pendeteksi ARTag sebagai Landasan Pacu AR.Drone Menggunakan Platform ROS (Robot Operating System),” Indones. J. Electron. Instrum. Syst., vol. 8, no. 2, pp. 131–142, 2018, doi: https://doi.org/10.22146/ijeis.23031.
B. B. M. Wantania, S. R. U. A. Sompie, and F. D. Kambey, “Penerapan Pendeteksian Manusia Dan Objek Dalam Keranjang Belanja Pada Antrian Di Kasir,” J. Tek. Inform., vol. 15, no. 2, pp. 101–108, 2020, doi: https://doi.org/10.35793/jti.v15i2.29004.
M. Z. Alom et al., “A State-of-the-Art Survey on Deep Learning Theory and Architectures,” Electronics, vol. 8, no. 3, pp. 1–66, 2019, doi: https://doi.org/10.3390/electronics8030292.
P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) pada Ekspresi Manusia,” ALGOR, vol. 2, no. 1, pp. 12–20, 2020, [Online]. Available: https://jurnal.ubd.ac.id/index.php/algor/article/view/441
M. H. Diponegoro, S. S. Kusumawardani, and I. Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: https://doi.org/10.22146/jnteti.v10i2.1417.
A. W. Sudjana, “Implementasi Deep Learning untuk Object Detection Menggunakan Algoritma YOLO (You Only Look Once) pada Rambu Lalu Lintas di Indonesia,” Program Studi Teknik Informatika, Universitas Pasundan Bandung, Bandung, 2022.
Husnan, C. Fatichah, and R. Dikairono, “Deteksi Objek Menggunakan Metode YOLO dan Implementasinya pada Robot Bawah Air,” J. Tek. ITS, vol. 12, no. 3, pp. 221–226, 2023, doi: 10.12962/j23373539.v12i3.122326.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in CVPR 2016, 2016, pp. 779–788.
V. Marcellino, V. C. Mawardi, and N. J. Perdana, “Pendeteksian Jumlah Penumpang yang Masuk Berdasarkan CCTV pada Pintu Bus dengan Metode YOLO,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 2, pp. 1–4, 2022, doi: https://doi.org/10.24912/jiksi.v10i2.22539.
E. Panja, H. Hendry, and C. Dewi, “YOLOv8 Analysis for Vehicle Classification Under Various Image Conditions,” Sci. J. Informatics, vol. 11, no. 1, pp. 127–138, 2024, doi: https://doi.org/10.15294/sji.v11i1.49038.
S. Tamang, B. Sen, A. Pradhan, K. Sharma, and V. K. Singh, “Enhancing COVID-19 Safety: Exploring YOLOv8 Object Detection for Accurate Face Mask Classification,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 2, pp. 892–897, 2023, [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/2966
M. Sohan, T. S. Ram, and C. V. R. Reddy, “A Review on YOLOv8 and Its Advancements,” in Data Intelligence and Cognitive Informatics, Singapore: Springer, 2023.
F. Jupiter, E. S. Negara, Y. N. Kunang, and M. I. Herdiansyah, “Implementasi Algoritma CNN dan YOLO untuk Mendeteksi Jenis Kendaraan pada Jalan Raya,” J. Sist. Inf. dan Telemat. (Telekomunikasi, Multimed. dan Inform., vol. 14, no. 2, pp. 110–117, 2023, doi: http://dx.doi.org/10.36448/jsit.v14i2.3259.
P. Mayadewi and E. Rosely, “Prediksi Nilai Proyek Akhir Mahasiswa Menggunakan Algoritma Klasifikasi Data Mining,” in Seminar Nasional Sistem Informasi Indonesia, 2015, pp. 329–334.
S. Clara, D. L. Prianto, R. Al Habsi, E. F. Lumbantobing, and N. Chamidah, “Implementasi Seleksi Fitur pada Algoritma Klasifikasi Machine Learning untuk Prediksi Penghasilan pada Adult Income Dataset,” in Prosiding Senamika (Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya), 2021, pp. 741–747.
M. D. R. P. Dio, B. Priyatna, A. L. Hananto, and S. S. Hilabi, “Deteksi Objek Kecelakaan Pada Kendaraan Roda Empat Menggunakan Algoritma YOLOv5,” Teknol. J. Ilm. Teknol. Sist. Inf., vol. 12, no. 2, pp. 15–26, 2022, doi: https://doi.org/10.26594/teknologi.v12i2.3260.
M. Ibrahim and U. Latifa, “Penerapan Algoritma YOLOv8 dalam Deteksi Waktu Panen Tanaman Pakcoy Berbasis Website,” J. Mhs. Tek. Inform., vol. 7, no. 4, pp. 2489–2495, 2023, doi: https://doi.org/10.36040/jati.v7i4.7154.
D. G. Manurung et al., “Deteksi dan Klasifikasi Hama Potato Beetle pada Tanaman Kentang Menggunakan Yolov8,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 723–733, 2024, doi: https://doi.org/10.25126/jtiik.1148092.
A. Ardiansyah, J. Triloka, and I. Indera, “Evaluasi Kinerja Model YOLOv8 dalam Deteksi Kesegaran Buah,” J. Penelit. Ilmu dan Teknol. Komput., vol. 16, no. 2, pp. 357–363, 2024, doi: https://doi.org/10.5281/zenodo.11296226.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Atika Dwi Febriani, Mujiati Dwi Kartikasari

This work is licensed under a Creative Commons Attribution 4.0 International License.