Digital Forensic Chatbot Using DeepSeek LLM and NER for Automated Electronic Evidence Investigation

Authors

  • Nuurun Najmi Qonita Department of Information Technology, Science and Technology Faculty, Walisongo State Islamic University Semarang, Indonesia
  • Maya Rini Handayani Department of Information Technology, Science and Technology Faculty, Walisongo State Islamic University Semarang, Indonesia
  • Khothibul Umam Department of Information Technology, Science and Technology Faculty, Walisongo State Islamic University Semarang, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.3.4593

Keywords:

Chatbot, Cybercrime Investigation, DeepSeek LLM, Digital Forensics, Named Entity Recognition

Abstract

The growing complexity of cybercrime necessitates efficient and accurate digital forensic tools for analyzing electronic evidence. This research presents an intelligent digital forensic chatbot powered by DeepSeek Large Language Model (LLM) and Named Entity Recognition (NER), designed to automate the analysis of various digital evidence, including system logs, emails, and image metadata. The chatbot is deployed on the Telegram platform, providing real-time interaction with investigators. The metric results show that the chatbot achieves a precision of 83.52%, a recall of 88.03%, and an F1-score of 85.71%. These results demonstrate the chatbot's effectiveness in accurately detecting forensic entities, significantly improving investigation efficiency. This study contributes to digital forensics by integrating LLM and NER for enhanced evidence analysis, offering a scalable and adaptive solution for automated cybercrime investigations. Future research may explore integrating anomaly detection and blockchain-based evidence integrity.

Downloads

Download data is not yet available.

References

A. Fahrudin, G. Z. Muflih, and T. Informatika, “Analisis Forensik Digital Pada Pesan Whatsapp Yang Terenkripsi Dengan Pretty Good Privacy (PGP) Menggunakan Framework DFRWS,” vol. 9, no. 1, pp. 780–787, 2025.

H. A. F. Muhyidin and L. Venica, “Pengembangan Chatbot untuk Meningkatkan Pengetahuan dan Kesadaran Keamanan Siber Menggunakan Long Short-Term Memory,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 5, no. 2, p. 152, 2023, doi: 10.36499/jinrpl.v5i2.8818.

M. arif Budiman, “Penggunaan Agen Berbasis Intelijen Untuk Menangani Kejahatan Siber,” J. Innov. Res. Knowl., vol. 1, no. 8, pp. 455–462, 2022.

A. Wickramasekara, F. Breitinger, and M. Scanlon, “Exploring the Potential of Large Language Models for Improving Digital Forensic Investigation Efficiency,” 2024, doi: 10.1016/j.fsidi.2024.301859.

H. C. Aydogan, B. Yıkar, H. Balandız, and S. Özsoy, “Assessing ChatGPT-4’s ability to generate forensic reports: a study of artificial intelligence in forensics,” Egypt. J. Forensic Sci., vol. 15, no. 1, pp. 1–12, 2025, doi: 10.1186/s41935-025-00445-1.

M. A. A. A. Dimas Rhoyhan Budi Satrio, Umar Mukhtar, “Penerapan Kecerdasan Buatan Dalam E-Commerce : Efisiensi,” vol. 9, no. 1, pp. 788–800, 2025.

Andika Isma, R. Rosidah, Sigit Sahalik Rahman, N. Nasrullah, Arif Setiawan Syam, and Novita Sari, “Analisis Penggunaan Chatbot Berbasis AI pada Model Hybrid di Jurusan Teknik Informatika dan Komputer,” J. Vocat. Informatics Comput. Educ., vol. 1, no. 2, pp. 79–92, 2023, doi: 10.61220/voice.v1i2.20239.

J. T. Danang Kurniawan, “Penerapan Teknologi Langchain dan LLM pada Sistem Question Answering Berbasis Chatbot Telegram : Literature Review,” pp. 95–104, 2025.

K. Y. Sreeram and K. Bansal, “Algorithmic Chat Monitoring for Mitigating Crime in Telegram : A Multi - Pronged Approach to Prevention and Forensics,” vol. 11, no. 1, pp. 14–21, 2024.

DeepSeek-AI et al., “DeepSeek LLM: Scaling Open-Source Language Models with Longtermism,” no. April, 2024, [Online]. Available: http://arxiv.org/abs/2401.02954

N. Rachmat and D. P. Kesuma, “Implementasi Large Language Models Gemini Pada Pengembangan Aplikasi Chatbot Berbasis Android,” J. Ilmu Komput., vol. 4, no. 1, p. 2024, 2024, doi: 10.31314/juik.v4i1.2831.

T. Gao, J. Jin, Z. T. Ke, and G. Moryoussef, “A Comparison of DeepSeek and Other LLMs,” no. February, 2025, doi: 10.48550/arXiv.2502.03688.

A. Yudhana, I. Riadi, and R. Y. Prasongko, “Forensik WhatsApp Menggunakan Metode Digital Forensic Research Workshop (DFRWS),” J. Inform. J. Pengemb. IT, vol. 7, no. 1, pp. 43–48, 2022, doi: 10.30591/jpit.v7i1.3639.

A. Simorangkir, P. Intani Sihite, C. Lusia Kiareni, R. Priskila, and V. Handrianus Pranatawijaya, “Pemodelan Chatbot Rekomendasi Hotel Dengan Menggunakan Natural Language Processing,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 9, no. 1, pp. 46–50, 2024, doi: 10.51876/simtek.v9i1.371.

A. Lidén and K. Nilros, “Perceived benefits and limitations of chatbots in higher education,” Linnaeus Univ., 2020.

R. A. Sanjaya and E. Winarno, “Pengembangan Chatbot Informasi Pariwisata di Kabupaten Pati Menggunakan Metode Natural Language Processing Berbasis Dialogflow,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 368, 2024, doi: 10.35889/jutisi.v13i1.1828.

G. P. Nugraha, L. H. Suadaa, N. Wilantika, “Pengembangan Aplikasi Chatbot dengan Large Language Model untuk Text-to-SQL Generation,” in National Seminar on Official Statistics, 2024, pp. 831-840.

E. K. W. Ibrahim Ahmad Assegaf, Muhammad Taufik Syastra, Rifky Kurniawan, Tiawan, Muhamad Soleh Fajari, Mawarseh, Retno Novarini, Ahmad Karim Harahap, Elfina Maulid, Yulia Irfayanti, Sutrisno, “Kata Kunci : Chatbot, OpenAi , Model GTP-3.5 Turbo, IDS Digital College .,” pp. 785–793, 2024.

M. Scanlon, F. Breitinger, C. Hargreaves, J. N. Hilgert, and J. Sheppard, “ChatGPT for digital forensic investigation: The good, the bad, and the unknown,” Forensic Sci. Int. Digit. Investig., vol. 46, no. S, p. 301609, 2023, doi: 10.1016/j.fsidi.2023.301609.

F. M. Rahman, R. R. J. Putra, and Y. Wihardi, “Analisis Statistik dan Implementasi Image Masking Berdasarkan Hasil Error Level Analysis pada Gambar Digital,” JATIKOM J. Apl. dan Teor. Ilmu Komput., vol. 3, no. 1, pp. 22–28, 2020.

A. Arrizal, “Named Entity Recognition (NER) Pada Teks Berbahasa Indonesia Dengan Fine- Tuning Indobert,” Sriwijaya University, 2024. [Online]. Available: https://repository.unsri.ac.id.

A. N. Fajari and A. Baizal, “Chatbot-based Culinary Tourism Recommender System Using Named Entity Recognition,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 4, pp. 1131–1138, 2022, doi: 10.29100/jipi.v7i4.3210.

Warto et al., Systematic Literature Review on Named Entity Recognition: Approach, Method, and Application, vol. 12, no. 4. 2024. doi: 10.19139/soic-2310-5070-1631.

Y. Heryanto, F. Farahdinna, and S. Wijanarko, “Evaluasi Responsivitas dan Akurasi: Perbandingan Kinerja ChatGPT dan Google BARD dalam Menjawab Pertanyaan seputar Python,” J. Ris. Sist. Inf. Dan Tek. Inform. (JURASIK, vol. 9, no. 1, pp. 248–256, 2024, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik

A. T. U. B. Lubis, N. S. Harahap, S. Agustian, M. Irsyad, and I. Afrianty, “Question Answering System pada Chatbot Telegram Menggunakan Large Language Models (LLM) dan Langchain (Studi Kasus UU Kesehatan),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 955–964, 2024, doi: 10.57152/malcom.v4i3.1378.

K. Eka Purnama, C. Rozikin, and A. Ali Ridha, “Analisis Forensic Citra Digital Menggunakan Teknik Error Level Analysis Dan Metadata Berdasarkan Metode Nist,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1100–1107, 2023, doi: 10.36040/jati.v7i2.6660.

Additional Files

Published

2025-06-10

How to Cite

[1]
N. N. . Qonita, M. R. . Handayani, and K. . Umam, “Digital Forensic Chatbot Using DeepSeek LLM and NER for Automated Electronic Evidence Investigation”, J. Tek. Inform. (JUTIF), vol. 6, no. 3, pp. 1203–1216, Jun. 2025.

Most read articles by the same author(s)