GPS-BASED TRACKING IN ARMAPS: THE EFFECT OF DEGREE SLANT SMARTPHONE TO DISPLAY AUGMENTED REALITY OBJECTS

  • Anna Syahrani Program Studi Teknik Informatika, Fakultas Teknik, Institut Teknologi Padang, Indonesia
  • Dede Wira Trise Putra Program Studi Teknik Informatika, Fakultas Teknik, Institut Teknologi Padang, Indonesia
  • Aulia Rahma Program Studi Teknik Informatika, Fakultas Teknik, Institut Teknologi Padang, Indonesia
Keywords: ARmaps, augmented reality, GPS-based tracking, mobile application, tracking techniques

Abstract

This paper discusses the functionality testing of the augmented reality (AR) application, namely ARmaps. ARmaps is an AR application for directions that uses GPS-based tracking technology (GPS-based tracking). GPS-based tracking is one of the basic techniques in AR, which does not require special media to scan visual objects (marker-less) GPS-based tracking is used to display data digitally. Digital data displayed in the form of user location and directions. Based on the test results, it was found that there was an effect of the degree slant smartphone on the delay time in displaying 3D AR graphic objects. The test is done statically by adjusting the degree slant, namely acute, right-angle, and obtuse. Each test was carried out 30 times. Smartphones that support ARmaps performance should have an accelerometer, proximity, gyroscope, compass, A-GPS with Glonass and BDS sensors, as well as a camera. Smartphones that are placed with a large degree slant of 90o (obtuse angle) have a faster delay time in displaying 3D AR graphic objects, which is 12.7 seconds. This research becomes the basis for developing ARmaps as a guiding application (visualization guiding).

Downloads

Download data is not yet available.

References

World Bank, “World Development Indicators,” 2019. https://data.worldbank.org/indicator/IT.CEL.SETS.P2 (accessed Dec. 07, 2020).

F. Y. Al Septiani, Khusnul Rahmah Eka Irsyadi, “Game Edukasi Tari Tradisional Indonesia Untuk Siswa Indonesian Traditional Dance Introduction Education Game for,” J. Tek. Inform., vol. 1, no. 1, pp. 7–12, 2020, doi: https://doi.org/10.20884/1.jutif.2020.1.1.11.

A. Birenboim and N. Shoval, “Mobility Research in the Age of the Smartphone,” Ann. Am. Assoc. Geogr., vol. 106, no. 2, pp. 1–9, Jan. 2016, doi: 10.1080/00045608.2015.1100058.

B. H. Limbu, H. Jarodzka, R. Klemke, and M. Specht, “Using sensors and augmented reality to train apprentices using recorded expert performance: A systematic literature review,” Educ. Res. Rev., vol. 25, pp. 1–22, 2018, doi: 10.1016/j.edurev.2018.07.001.

Di. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile Augmented Reality Survey: From Where We Are to Where We Go,” IEEE Access, vol. 5, no. c, pp. 6917–6950, 2017, doi: 10.1109/ACCESS.2017.2698164.

D. Amin and S. Govilkar, “Comparative Study of Augmented Reality SDK’s,” Int. J. Comput. Sci. Appl., vol. 5, no. 1, pp. 11–26, 2015, [Online]. Available: https://www.researchgate.net/profile/Sharvari_Govilkar/publication/276855764_Comparative_Study_of_Augmented_Reality_Sdk’s/links/57c5993908ae6db2cc769c36/Comparative-Study-of-Augmented-Reality-Sdks.pdf.

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput. Integr. Manuf., vol. 49, no. June 2017, pp. 215–228, 2018, doi: 10.1016/j.rcim.2017.06.002.

M. Billinghurst, A. Clark, and G. Lee, “A Survey of Augmented Reality,” Found. Trends®in Human–Computer Interact., vol. 8, no. 2–3, pp. 73–272, 2015, doi: 10.1561/1100000049.

S. K. Kim, S. J. Kang, Y. J. Choi, M. H. Choi, and M. Hong, “Augmented-Reality Survey: From Concept to Application,” KSII Trans. Internet Inf. Syst., vol. 11, no. 2, pp. 982–1004, 2017, doi: 10.3837/tiis.2017.02.019.

G. Bhorkar, “A Survey of Augmented Reality Navigation,” arXiv, 2017, [Online]. Available: https://arxiv.org/abs/1708.05006.

A. Katiyar, K. Kalra, and C. Garg, “Marker Based Augmented Reality,” Adv. Comput. Sci. Inf. Technol., vol. 2, no. 5, pp. 441–445, 2015, doi: 10.1145/2771839.2771842.

A. Syahrani, D. W. T. Putra, and A. Rahma, “Perancangan Aplikasi ARmaps Berdasarkan Real Environment dan Real World Camera View untuk Visualisasi Penunjuk Arah,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATi), 2017, pp. 19–23, [Online]. Available: https://journal.uii.ac.id/Snati/article/view/8488.

M. A. Muchtar, M. F. Syahputra, N. Syahputra, S. Ashrafia, and R. F. Rahmat, “Augmented Reality for Searching Potential Assets in Medan using GPS based Tracking,” J. Phys. Conf. Ser., vol. 755, no. 1, pp. 0–6, 2016, doi: 10.1088/1742-6596/755/1/011001.

K. Kim, M. Billinghurst, G. Bruder, H. B. L. Duh, and G. F. Welch, “Revisiting trends in augmented reality research: A review of the 2nd Decade of ISMAR (2008-2017),” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 11, pp. 2947–2962, 2018, doi: 10.1109/TVCG.2018.2868591.

F. Manuri and A. Sanna, “A Survey on Application of Augmented Reality,” Adv. Comput. Sci. an Int. J., vol. 5, no. 1, pp. 18–27, 2016, [Online]. Available: http://www.acsij.org/acsij/article/view/400/350.

C. Arth et al., “The History of Mobile Augmented Reality,” Graz, 2015. [Online]. Available: http://arxiv.org/abs/1505.01319.

X. You, W. Zhang, M. Ma, C. Deng, and J. Yang, “Survey on Urban Warfare Augmented Reality,” ISPRS Int. J. Geo-Information, vol. 7, no. 2, pp. 1–16, 2018, doi: 10.3390/ijgi7020046.

G. S. Von Itzstein, M. Billinghurst, R. T. Smith, and B. H. Thomas, “Encyclopedia of Computer Graphics and Games,” Encyclopedia of Computer Graphics and Games. Springer International Publishing, 2017, doi: 10.1007/978-3-319-08234-9.

E. C. E. Vidal, J. F. Ty, N. R. Caluya, and M. M. T. Rodrigo, “MAGIS: mobile augmented-reality games for instructional support,” Interact. Learn. Environ., vol. 0, no. 0, pp. 1–13, 2018, doi: 10.1080/10494820.2018.1504305.

L. F. Maia et al., “LAGARTO: A LocAtion based Games AuthoRing TOol enhanced with augmented reality features,” Entertain. Comput., vol. 22, pp. 3–13, 2017, doi: 10.1016/j.entcom.2017.05.001.

W. Li, A. Y. C. Nee, and S. K. Ong, “A State-of-the-Art Review of Augmented Reality in Engineering Analysis and Simulation,” Multimodal Technol. Interact., vol. 1, no. 3, pp. 1–22, 2017, doi: 10.3390/mti1030017.

C. Bermejo, Z. Huang, T. Braud, and P. Hui, “When Augmented Reality meets Big Data,” Proc. - IEEE 37th Int. Conf. Distrib. Comput. Syst. Work. ICDCSW 2017, pp. 169–174, 2017, doi: 10.1109/ICDCSW.2017.62.

Published
2021-01-13
How to Cite
[1]
A. Syahrani, D. W. T. Putra, and A. Rahma, “GPS-BASED TRACKING IN ARMAPS: THE EFFECT OF DEGREE SLANT SMARTPHONE TO DISPLAY AUGMENTED REALITY OBJECTS”, J. Tek. Inform. (JUTIF), vol. 2, no. 1, pp. 43-49, Jan. 2021.