Deep Reinforcement Learning for Autonomous System Optimization in Indonesia: A Systematic Literature Review

Authors

  • Dedi Yusuf Electrical Engineering Study Program, Faculty of Engineering, Semarang State University, Semarang, Indonesia
  • Eko Supraptono Electrical Engineering Study Program, Faculty of Engineering, Semarang State University, Semarang, Indonesia
  • Agus Suryanto Electrical Engineering Study Program, Faculty of Engineering, Semarang State University, Semarang, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.3.4446

Keywords:

Autonomous System Optimization, Deep Reinforcement Learning, Systematic Literature Review

Abstract

Background: The development of artificial intelligence (AI) technology, including Deep Reinforcement Learning (DRL), has brought significant changes in various industrial sectors, especially in autonomous systems. DRL combines the capabilities of Deep Learning (DL) in processing complex data with those of Reinforcement Learning (RL) in making adaptive decisions through interaction with the environment. However, the application of DRL in autonomous systems still faces several challenges, such as training stability, model generalization, and high data and computing resource requirements. Methods: This study uses the Systematic Literature Review (SLR) method to identify, evaluate, and analyze the latest developments in DRL for autonomous system optimization. The SLR was conducted by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, which consists of four main stages: identification, screening, eligibility, and inclusion of research articles. Data were collected through literature searches in leading scientific journal databases such as IEEE Xplore, MDPI, ACM Digital Library, ScienceDirect (Elsevier), SpringerLink, arXiv, Scopus, and Web of Science. Results: This study found that DRL has been widely adopted in various industrial sectors, including transportation, industrial robotics, and traffic management. The integration of DRL with other technologies such as Computer Vision, IoT, and Edge Computing further enhances its capability to handle uncertain and dynamic environments. Therefore, this study is crucial in providing a comprehensive understanding of the potential, challenges, and future directions of DRL development in autonomous systems, in order to foster more adaptive, efficient, and reliable technological innovations.

Downloads

Download data is not yet available.

References

M. Panzer and B. Bender, “Deep reinforcement learning in production systems: a systematic literature review,” Int. J. Prod. Res., vol. 60, no. 13, pp. 4316–4341, 2022, doi: 10.1080/00207543.2021.1973138.

S. Bauskar, “Leveraging AI for Intelligent Data Management in Multi-Cloud Database Architectures,” 2025.

Z. Tang, T. Li, D. Wu, J. Liu, and Z. Yang, “A Systematic Literature Review of Reinforcement Learning-based Knowledge Graph Research,” Expert Syst. Appl., vol. 238, no. March 2023, 2024, doi: 10.1016/j.eswa.2023.121880.

A. Farooq and K. Iqbal, “A Survey of Reinforcement Learning for Optimization in Automation,” IEEE Int. Conf. Autom. Sci. Eng., pp. 2487–2494, 2024, doi: 10.1109/CASE59546.2024.10711718.

G. N. P. Pratama, I. Hidayatulloh, H. D. Surjono, and T. Sukardiyono, “Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile Robot,” J. Robot. Control, vol. 5, no. 3, pp. 667–676, 2024, doi: 10.18196/jrc.v5i3.21713.

M. Khalid, L. Wang, K. Wang, N. Aslam, C. Pan, and Y. Cao, “Deep reinforcement learning-based long-range autonomous valet parking for smart cities,” Sustain. Cities Soc., vol. 89, no. November 2022, p. 104311, 2023, doi: 10.1016/j.scs.2022.104311.

Y. Yi, “A Deep Reinforcement Learning-Based Speed Optimization System to Reduce Fuel Consumption and Emissions for Smart Cities,” 2025.

Y. Chen, C. Ji, Y. Cai, T. Yan, and B. Su, “Deep Reinforcement Learning in Autonomous Car Path Planning and Control: A Survey,” pp. 1–29, 2024, [Online]. Available: http://arxiv.org/abs/2404.00340

M. Panzer and B. Bender, “Deep reinforcement learning in production systems: a systematic literature review,” Int. J. Prod. Res., vol. 60, no. 13, pp. 4316–4341, 2022, doi: 10.1080/00207543.2021.1973138.

M. Panzer, B. Bender, and N. Gronau, “Deep Reinforcement Learning In Production Planning And Control: A Systematic Literature Review,” Proc. Conf. Prod. Syst. Logist., pp. 535–345, 2021, doi: 10.15488/11238.

K. Sivamayil, E. Rajasekar, B. Aljafari, S. Nikolovski, S. Vairavasundaram, and I. Vairavasundaram, “A Systematic Study on Reinforcement Learning Based Applications,” Energies, vol. 16, no. 3, pp. 1–23, 2023, doi: 10.3390/en16031512.

G. Icarte-Ahumada, J. Montoya, and Z. He, “Learning in multi-agent systems to solve scheduling problems: a systematic literature review,” Ingeniare, vol. 32, pp. 1–14, 2024, doi: 10.4067/s0718-33052024000100214.

I. Karisma and Y. Arifatul Fatimah, “Literature Review : Teknik Perancangan Tata Letak Fasilitas Gudang Pada Perushaan Manufaktur Yang Efisien,” Borobudur Eng. Rev., vol. 2, no. 1, pp. 12–22, 2022, doi: 10.31603/benr.6300.

L. Fadilah, A. Dwi Wanti, S. Z. Latifah, and M. A. Yaqin, “Fadilah, Lailatul,” JACIS J. Autom. Comput. Inf. Syst., vol. 2, no. 02, pp. 116–129, 2022.

A. Siski Rohana, L. Rakhmawati, L. Endah Cahya Ningrum, and Y. Sutoto Nugroho, “Studi Literatur: Pembelajaran Menggunakan Media Augmented Reality Di Sekolah Menengah Kejuruan,” J. Pendidik. Tek. Elektro, vol. 11, no. 03, pp. 479–490, 2022.

A. Ladha and D. Mohan, “Energy optimization in autonomous driving using deep reinforced learning and stochastic system modelling,” vol. 6, no. 9, pp. 132–140, 2021, [Online]. Available: https://www.semanticscholar.org/paper/c5d3ccac1f00e9eece693f0abff1fc0b34e49a8a

Z. Yu, W. Zheng, K. Zeng, R. Zhao, Y. Zhang, and M. Zeng, “Energy optimization management of microgrid using improved soft actor-critic algorithm,” Int. J. Renew. Energy Dev., vol. 13, no. 2, pp. 329–339, 2024, doi: 10.61435/ijred.2024.59988.

S.-F. Wen and B. Katt, Articial intelligence for system security assurance: A systematic literature review, vol. 24, no. 1. Springer Berlin Heidelberg, 2024. doi: 10.1007/s10207-024-00959-0.

Y. Bekkemoen, Explainable reinforcement learning (XRL): a systematic literature review and taxonomy, vol. 113, no. 1. Springer US, 2024. doi: 10.1007/s10994-023-06479-7.

O. Gheibi, D. Weyns, and F. Quin, “Applying Machine Learning in Self-adaptive Systems,” ACM Trans. Auton. Adapt. Syst., vol. 15, no. 3, 2021, doi: 10.1145/3469440.

et al., “Machine Learning Methods for (Dis-)Assembly Sequence Planning - A Systematic Literature Review,” Int. J. Adv. Prod. Res., vol. 1, no. 1, pp. 83–98, 2024, doi: 10.62743/uad.8279.

I. N. Yazid and E. Rachmawati, “Autonomous driving system using proximal policy optimization in deep reinforcement learning,” IAES Int. J. Artif. Intell., vol. 12, no. 1, pp. 422–431, 2023, doi: 10.11591/ijai.v12.i1.pp422-431.

E. H. Sumiea et al., “Deep deterministic policy gradient algorithm: A systematic review,” Heliyon, vol. 10, no. 9, p. e30697, 2024, doi: 10.1016/j.heliyon.2024.e30697.

T. Zhang and H. Mo, “Reinforcement learning for robot research: A comprehensive review and open issues,” Int. J. Adv. Robot. Syst., vol. 18, no. 3, pp. 1–22, 2021, doi: 10.1177/17298814211007305.

P. L. Donti and J. Z. Kolter, “Machine Learning for Sustainable Energy Systems,” Annu. Rev. Environ. Resour., vol. 46, pp. 719–747, 2021, doi: 10.1146/annurev-environ-020220-061831.

J. Zhang and J. Zhang, “Artificial Intelligence Applied on Traffic Planning and Management for Rail Transport: A Review and Perspective,” Discret. Dyn. Nat. Soc., vol. 2023, 2023, doi: 10.1155/2023/1832501.

I. Miadowicz, D. M. Quinto, and M. Felderer, “Self-X Characterization of Autonomous Systems : A Systematic Literature Review,” vol. 1, no. 1, 2024.

F. Den Hengst, E. M. Grua, A. El Hassouni, and M. Hoogendoorn, Reinforcement learning for personalization: A systematic literature review, vol. 3, no. 2. 2020. doi: 10.3233/DS-200028.

N. M. Ashraf, R. R. Mostafa, R. H. Sakr, and M. Z. Rashad, “Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm,” PLoS One, vol. 16, no. 6 June, pp. 1–24, 2021, doi: 10.1371/journal.pone.0252754.

C. Ma, A. Li, Y. Du, H. Dong, and Y. Yang, “Efficient and scalable reinforcement learning for large-scale network control,” Nat. Mach. Intell., vol. 6, no. September, 2024, doi: 10.1038/s42256-024-00879-7.

S. Shisiali, E. Amuti, O. Calvins, and O. James, “A Systematic Literature Review of Path-Planning Strategies for Robot A Systematic Literature Review of Path-Planning Strategies for Robot Navigation in Unknown Environment,” vol. 4523, no. September, pp. 154–177, 2023.

M. Noaeen et al., “Reinforcement learning in urban network traffic signal control: A systematic literature review,” Expert Syst. Appl., vol. 199, no. March 2021, p. 116830, 2022, doi: 10.1016/j.eswa.2022.116830.

S. Krishnamoorthi and G. K. Shyam, “Design of Recommendendation Systems Using Deep Reinforcement Learning – Recent Advancements and Applications,” J. Theor. Appl. Inf. Technol., vol. 102, no. 7, pp. 2908–2923, 2024.

F. AlMahamid and K. Grolinger, “Autonomous Unmanned Aerial Vehicle navigation using Reinforcement Learning: A systematic review,” Eng. Appl. Artif. Intell., vol. 115, pp. 0–2, 2022, doi: 10.1016/j.engappai.2022.105321.

M. Hu, J. Zhang, L. Matkovic, T. Liu, and X. Yang, “Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions,” J. Appl. Clin. Med. Phys., vol. 24, no. 2, pp. 1–21, 2023, doi: 10.1002/acm2.13898.

H. Zhao et al., “Combination optimization method of grid sections based on deep reinforcement learning with accelerated convergence speed,” Front. Energy Res., vol. 11, no. October, pp. 1–9, 2023, doi: 10.3389/fenrg.2023.1269854.

A. A. Volk et al., “AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning,” Nat. Commun., vol. 14, no. 1, pp. 1–16, 2023, doi: 10.1038/s41467-023-37139-y.

K. Mitsopoulos, S. Somers, J. Schooler, C. Lebiere, P. Pirolli, and R. Thomson, “Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture,” Top. Cogn. Sci., vol. 14, no. 4, pp. 756–779, 2022, doi: 10.1111/tops.12573.

K. Athania Purba and T. Dewayanto, “Penerapan Artificial Intelligence, Machine Learning Dan Deep Learning Pada Kurikulum Akuntansi-a Systematic Literature Review,” Diponegoro J. Account., vol. 12, no. 3, pp. 1–15, 2023, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/accounting

H. Hoppe, T. Enders, Q. Cappart, and M. Schiffer, “Global Rewards in Multi-Agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems,” Proc. Mach. Learn. Res., vol. 242, pp. 260–272, 2024.

P. Macaluso, “Deep Reinforcement Learning for Autonomous Systems,” Master Thesis, Dep. Control Comput. Eng. Univ. Politec. DI TORINO, vol. 44, no. 5, pp. 4125–4133, 2020.

F. Jerald, S. Murugaanandam, S. K. Thillaigovindan, P. Prasanna, and M. Vimala, “Future Trends of AI-Based Modelling in the Context of Smart Devices and Smart Systems,” Nanotechnol. Perceptions, vol. 20, no. S7, pp. 14–26, 2024, doi: 10.62441/nano-ntp.v20iS7.2.

H. Zhang and C. Zhang, “Low-carbon power demand forecasting models for the performance optimization of new energy robotics systems,” no. December 2024, pp. 341–352, 2025.

A. Tammewar et al., “Improving the Performance of Autonomous Driving through Deep Reinforcement Learning,” Sustain., vol. 15, no. 18, 2023, doi: 10.3390/su151813799.

R. Tang et al., “A literature review of Artificial Intelligence applications in railway systems,” Transp. Res. Part C Emerg. Technol., vol. 140, no. April, 2022, doi: 10.1016/j.trc.2022.103679.

M. Aria, “Algoritma Perencanaan Jalur Kendaraan Otonom di Lingkungan Perkotaan dari Sudut Pandang Filosofi Kuhn dan Filosofi Popper,” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 7, no. 2, 2020, doi: 10.34010/telekontran.v7i2.2627.

D. Arya and S. Pratama, “Pengembangan Kontrol Adaptif untuk Kendaraan Otonom dengan Studi Kasus pada Mobil Elektrik Berbasis Deep Reinforcement Learning,” no. 2019, pp. 234–239, 2024.

S. Abdallaoui, H. Ikaouassen, A. Kribèche, A. Chaibet, and E. Aglzim, “Advancing autonomous vehicle control systems: An in‐depth overview of decision‐making and manoeuvre execution state of the art,” J. Eng., vol. 2023, no. 11, pp. 1–16, 2023, doi: 10.1049/tje2.12333.

A. M. Geske, D. M. Herold, and S. Kummer, “Artificial intelligence as a driver of efficiency in air passenger transport: A systematic literature review and future research avenues,” J. Air Transp. Res. Soc., vol. 3, no. June, p. 100030, 2024, doi: 10.1016/j.jatrs.2024.100030.

D. D. Cahyo, “Simulasi Self-Driving Car dengan Reinforcement Learning dan NeuroEvolution of Augmenting Topologies (NEAT),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 1752–1761, 2022, doi: 10.35957/jatisi.v9i3.2154.

D. Xiang, “Reinforcement learning in autonomous driving,” Appl. Comput. Eng., vol. 48, no. 1, pp. 17–23, 2024, doi: 10.54254/2755-2721/48/20241072.

D. Pembimbing and A. W. S. T, SIMULASI DEEP LEARNING PADA AUTONOMOUS VEHICLE MENGGUNAKAN NVIDIA JETBOT UNTUK. 2022.

S. H. Ashwin and R. Naveen Raj, “Deep reinforcement learning for autonomous vehicles: lane keep and overtaking scenarios with collision avoidance,” Int. J. Inf. Technol., vol. 15, no. 7, pp. 3541–3553, 2023, doi: 10.1007/s41870-023-01412-6.

A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues,” Array, vol. 10, no. December 2020, p. 100057, 2021, doi: 10.1016/j.array.2021.100057.

L. Ge, X. Zhou, Y. Li, and Y. Wang, “Deep reinforcement learning navigation via decision transformer in autonomous driving,” Front. Neurorobot., vol. 18, 2024, doi: 10.3389/fnbot.2024.1338189.

Additional Files

Published

2025-06-10

How to Cite

[1]
D. . Yusuf, E. Supraptono, and A. Suryanto, “Deep Reinforcement Learning for Autonomous System Optimization in Indonesia: A Systematic Literature Review ”, J. Tek. Inform. (JUTIF), vol. 6, no. 3, pp. 1189–1202, Jun. 2025.