Comparative Analysis of Augmentation and Filtering Methods in VGG19 and DenseNet121 for Breast Cancer Classification

Authors

  • I Kadek Seneng Magister Program, Department of Magister Information System, Institut Teknologi dan Bisnis STIKOM Bali, Indonesia
  • Putu Desiana Wulaning Ayu Department of Magister Information System, Institut Teknologi dan Bisnis STIKOM Bali, Indonesia
  • Roy Rudolf Huizen Department of Magister Information System, Institut Teknologi dan Bisnis STIKOM Bali, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.3.4397

Keywords:

Augmentation , Breast Cancer, Classification , Mammograms, VGG19

Abstract

Breast cancer is one of the most prevalent malignancies and a leading cause of mortality among women worldwide. Mammography plays a crucial role in early detection, yet challenges in manual interpretation have led to the adoption of Convolutional Neural Networks (CNNs) to improve classification accuracy. This study evaluates the performance of Visual Geometry Group (VGG19) and Densely Connected Convolutional Networks (DenseNet121) in mammogram classification. It examines the impact of data augmentation and image enhancement techniques, including Contrast-Limited Adaptive Histogram Equalization (CLAHE), Median Filtering, and Discrete Wavelet Transform (DWT), as well as the influence of varying epochs and learning rates. A novel approach is introduced by assessing data augmentation effectiveness and exploring model adaptations, such as layer incorporation and freezing during training. Classification performance is enhanced through fine-tuning strategies combined with image enhancement techniques, reducing reliance on data augmentation. These findings contribute to medical imaging and computer science by demonstrating how CNN modifications and enhancement methods improve mammogram classification, providing insights for developing robust deep learning-based diagnostic models. The highest performance was achieved using VGG19 with DWT, a learning rate of 0.0001, and 20 epochs, yielding 98.04% accuracy, 98.11% precision, 98% recall, and a 97.99% F1-score. Data augmentation did not consistently enhance results, particularly in clean datasets. Increasing epochs from 10 to 20 improved accuracy, but performance declined at 30 epochs. The confusion matrix showed high accuracy for Benign (100%) and Cancer (99.5%), with more misclassifications in the Normal class (94.5%).

Downloads

Download data is not yet available.

References

H. Sumarti, S. R. Anggita, Hartono, F. R. Pratama, and A. N. Tasyakuranti, “Texture-Based Classification of Benign and Malignant Mammography Images using Weka Machine Learning: An Optimal Approach,” Evergreen, vol. 10, no. 3, pp. 1570–1580, Sep. 2023, doi: 10.5109/7151705.

A. Nurrohmah et al., “Risk Factors of Breast Cancer,” GASTER JOURNAL OF HEALTH SCIENCE, vol. 20, no. 1, pp. 1–10, 2022, doi: 10.30787/gaster.v20i1.

A. B. Khaerunnisa, K. L. Latief, F. I. Syahruddin, I. Royani, and and R. P. Juhamran, “Hubungan Tingkat Pengetahuan dan Sikap terhadap Deteksi Dini Kanker Payudara pada Pegawai Rumah Sakit Ibnu Sina Makassar,” no. Vol. 3 No. 9, Sep. 2023, doi: https://doi.org/10.33096/fmj.v3i9.291.

J. Liu et al., “Association of dietary carbohydrate ratio, caloric restriction, and genetic factors with breast cancer risk in a cohort study,” Sci Rep, vol. 15, no. 1, p. 6263, Feb. 2025, doi: 10.1038/s41598-025-90844-0.

M. Arnold et al., “Current and future burden of breast cancer: Global statistics for 2020 and 2040,” Breast, vol. 66, pp. 15–23, Dec. 2022, doi: 10.1016/j.breast.2022.08.010.

C. Laza-Vásquez et al., “Views of health professionals on risk-based breast cancer screening and its implementation in the Spanish National Health System: A qualitative discussion group study,” PLoS One, vol. 17, no. 2 February, Feb. 2022, doi: 10.1371/journal.pone.0263788.

M. Heinig, W. Schäfer, I. Langner, H. Zeeb, and U. Haug, “German mammography screening program: adherence, characteristics of (non-)participants and utilization of non-screening mammography—a longitudinal analysis,” BMC Public Health, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12889-023-16589-5.

T. Uematsu, “Rethinking screening mammography in Japan: next-generation breast cancer screening through breast awareness and supplemental ultrasonography,” Breast Cancer, vol. 31, no. 1, pp. 24–30, Jan. 2024, doi: 10.1007/s12282-023-01506-w.

L. Choridah et al., “Knowledge and Acceptance Towards Mammography as Breast Cancer Screening Tool Among Yogyakarta Women and Health Care Providers (Mammography Screening in Indonesia),” Journal of Cancer Education, vol. 36, no. 3, pp. 532–537, Jun. 2021, doi: 10.1007/s13187-019-01659-3.

K. Ishaq and M. Mustagis, “Computer Aided Detection and Classification of mammograms using Convolutional Neural Network,” Electrical Engineering and Systems Science, pp. 1–16, Sep. 2024, doi: 10.48550/arXiv.2409.16290.

S. Shafi and A. V. Parwani, “Artificial intelligence in diagnostic pathology,” BMC Res Notes, vol. 18, no. 1, pp. 1–12, Dec. 2023, doi: 10.1186/s13000-023-01375-z.

N. Nafissi et al., “The Application of Artificial Intelligence in Breast Cancer,” Eurasian J Med Oncol, vol. 8, no. 3, pp. 235–244, 2024, doi: 10.14744/ejmo.2024.45903.

A. Kajala, S. Jaiswal, and R. Kumar, “Comparative Analysis of CNN Architectures for Classification of Breast Histopathological Images,” vol. 2023, no. 8, pp. 4696–4705, Oct. 2023.

D. Fonseka and C. Chrysoulas, “Data Augmentation to Improve the Performance of a Convolutional Neural Network on Image Classification,” in 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 515–518. doi: 10.1109/DASA51403.2020.9317249.

T. Kumar, A. Mileo, R. Brennan, and M. Bendechache, “Image Data Augmentation Approaches: A Comprehensive Survey and Future directions,” IEEE Access, vol. 12, pp. 187536–187571, Jan. 2024, doi: 10.1109/ACCESS.2024.3470122.

Y. Khourdifi, A. El Alami, M. Zaydi, Y. Maleh, and O. Er-Remyly, “Early Breast Cancer Detection Based on Deep Learning: An Ensemble Approach Applied to Mammograms,” BioMedInformatics, vol. 4, no. 4, pp. 2338–2373, Dec. 2024, doi: 10.3390/biomedinformatics4040127.

S. Chakravarthy et al., “Multi-class Breast Cancer Classification Using CNN Features Hybridization,” International Journal of Computational Intelligence Systems, vol. 17, no. 1, Dec. 2024, doi: 10.1007/s44196-024-00593-7.

S. Mohapatra, S. Muduly, S. Mohanty, J. V. R. Ravindra, and S. N. Mohanty, “Evaluation of deep learning models for detecting breast cancer using histopathological mammograms Images,” Sustainable Operations and Computers, vol. 3, pp. 296–302, Jan. 2022, doi: 10.1016/j.susoc.2022.06.001.

S. M. Thwin, S. J. Malebary, A. W. Abulfaraj, and H. S. Park, “Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks,” Technologies (Basel), vol. 12, no. 2, Feb. 2024, doi: 10.3390/technologies12020016.

P. Kirichenko et al., “Understanding the Detrimental Class-level Effects of Data Augmentation,” in NIPS’23: 37th International Conference on Neural Information Processing Systems New Orleans LA USA, Curran Associates Inc.57 Morehouse LaneRed HookNYUnited States, Dec. 2023. doi: https://dl.acm.org/doi/10.1145/3659620.

V. Auxilia Osvin Nancy, M. S. Arya, and N. Nitin, “Impact of Data Augmentation on Skin Lesion Classification Using Deep Learning,” in Proceedings - 2022 5th International Conference on Information and Computer Technologies, ICICT 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 67–72. doi: 10.1109/ICICT55905.2022.00020.

K. Alshamrani, H. A. Alshamrani, F. F. Alqahtani, and B. S. Almutairi, “Enhancement of Mammographic Images Using Histogram-Based Techniques for Their Classification Using CNN,” Sensors, vol. 23, no. 1, pp. 1–22, Jan. 2023, doi: 10.3390/s23010235.

A. Rasheed, E. I. Essa, and B. F. Jumaa, “New hybrid Filtering Methods to remove noise from Digital Images,” Journal of Advanced Sciences and Nanotechnology, vol. 1, no. 4, pp. 88–101, Oct. 2022, doi: 10.55945/joasnt.2022.1.4.88-101.

C. Christudhas and A. Fathima, “VLSI implementation of a modified min-max median filter using an area and power competent tritonic sorter for image denoising,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-80053-6.

H. Qu, K. Liu, and L. Zhang, “Research on improved black widow algorithm for medical image denoising,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-51803-3.

S. N. Nia and F. Y. Shih, “Medical X-Ray Image Enhancement Using Global Contrast-Limited Adaptive Histogram Equalization,” Intern J Pattern Recognit Artif Intell, vol. 38, no. 12, pp. 1–17, Sep. 2024, doi: 10.1142/S0218001424570106.

A. Tawakuli, B. Havers, V. Gulisano, D. Kaiser, and T. Engel, “Survey:Time-series data preprocessing: A survey and an empirical analysis,” Journal of Engineering Research (Kuwait), pp. 1–38, Mar. 2024, doi: 10.1016/j.jer.2024.02.018.

S. Saifullah, “ANALISIS PERBANDINGAN HE DAN CLAHE PADA IMAGE ENHANCEMENT DALAM PROSES SEGMENASI CITRA UNTUK DETEKSI FERTILITAS TELUR,” Jurnal Nasional Pendidikan Teknik Informatika, vol. 9, no. 1, pp. 134–145, Mar. 2020, doi: https://doi.org/10.23887/janapati.v9i1.23013.

M. Lin, Y. Hong, S. Hong, and S. Zhang, “Discrete Wavelet Transform based ECG classification using gcForest: A deep ensemble method,” Technology and Health Care, vol. 32, pp. S95–S105, May 2024, doi: 10.3233/THC-248008.

S. Goyal and R. Singh, “Detection and classification of lung diseases for pneumonia and Covid-19 using machine and deep learning techniques,” J Ambient Intell Humaniz Comput, vol. 14, no. 4, pp. 3239–3259, Apr. 2023, doi: 10.1007/s12652-021-03464-7.

N. Cao and Y. Liu, “High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold,” Applied Sciences (Switzerland), vol. 14, no. 2, pp. 1–21, Jan. 2024, doi: 10.3390/app14020635.

S. Saifullah, A. P. Suryotomo, R. Dreżewski, R. Tanone, and T. Tundo, “Optimizing Brain Tumor Segmentation Through CNN U-Net with CLAHE-HE Image Enhancement,” 2024, pp. 90–101. doi: 10.2991/978-94-6463-366-5_9.

S. S. Verma, A. Prasad, and A. Kumar, “CovXmlc: High performance COVID-19 detection on X-ray images using Multi-Model classification,” Biomed Signal Process Control, vol. 71, no. 10, pp. 1–7, Jan. 2022, doi: 10.1016/j.bspc.2021.103272.

M. Matin and M. Azadi, “Effect of Training Data Ratio and Normalizing on Fatigue Lifetime Prediction of Aluminum Alloys with Machine Learning,” International Journal of Engineering, Transactions A: Basics, vol. 37, no. 7, pp. 1296–1305, Jul. 2024, doi: 10.5829/ije.2024.37.07a.09.

D. A. Arafa, H. E. D. Moustafa, H. A. Ali, A. M. T. Ali-Eldin, and S. F. Saraya, “A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images,” Multimed Tools Appl, vol. 83, no. 2, pp. 3767–3799, Jan. 2024, doi: 10.1007/s11042-023-15738-7.

E. Goceri, “Medical image data augmentation: techniques, comparisons and interpretations,” Artif Intell Rev, vol. 56, no. 11, pp. 12561–12605, Nov. 2023, doi: 10.1007/s10462-023-10453-z.

A. Kebaili, J. Lapuyade-Lahorgue, and S. Ruan, “Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review,” J Imaging, vol. 9, no. 4, pp. 1–28, Apr. 2023, doi: 10.3390/jimaging9040081.

A. Kokkula, P. C. Sekhar, and T. M. Praneeth Naidu, “Modified VGG-19 Deep Learning Strategies for Parkinson’s Disease Diagnosis-A Comprehensive Review and Novel Approach,” Journal of Angiotherapy, vol. 8, no. 3, 2024, doi: 10.25163/angiotherapy.839559.

M. A. Rajab, F. A. Abdullatif, and T. Sutikno, “Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 22, no. 2, pp. 445–453, Apr. 2024, doi: 10.12928/TELKOMNIKA.v22i2.25840.

R. Sujatha, J. M. Chatterjee, A. Angelopoulou, E. Kapetanios, P. N. Srinivasu, and D. J. Hemanth, “A transfer learning-based system for grading breast invasive ductal carcinoma,” IET Image Process, vol. 17, no. 7, pp. 1979–1990, May 2023, doi: 10.1049/ipr2.12660.

H. P. Hadi, E. H. Rachmawanto, and R. R. Ali, “Comparison of DenseNet-121 and MobileNet for Coral Reef Classification,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23, no. 2, pp. 333–342, Mar. 2024, doi: 10.30812/matrik.v23i2.3683.

J. Opitz, “A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice,” Trans Assoc Comput Linguist, vol. 12, pp. 820–836, Jun. 2024, doi: 10.1162/tacl.

Additional Files

Published

2025-06-10

How to Cite

[1]
I. K. . Seneng, P. D. W. . Ayu, and R. R. . Huizen, “Comparative Analysis of Augmentation and Filtering Methods in VGG19 and DenseNet121 for Breast Cancer Classification”, J. Tek. Inform. (JUTIF), vol. 6, no. 3, pp. 1131–1146, Jun. 2025.