A COMPARATIVE STUDY OF MULTI-MASTER REPLICATION OF NOSQL DATABASE SERVER WITH VARYING DATA FORMATS

  • Dwi Kurnia Wibowo Informatics, Engineering Faculty, Universitas Jenderal Soedirman, Indonesia.
  • Agus Darmawan Informatics, Engineering Faculty, Universitas Jenderal Soedirman, Indonesia.
  • Devi Astri Nawangnugraeni Informatics, Engineering Faculty, Universitas Jenderal Soedirman, Indonesia.
Keywords: Database Server, Document Stored, Data Format, Multi-Master Server, NoSQL

Abstract

NoSQL Databases are currently an effective solution for managing large data sets distributed across many Servers. NoSQL Database design is usually based on its usability. Specifically related to the system or application to be built. This research aims to measure the Transfer Rate, CPU usage, Memory usage, query execution time for Create, Insert, Delete and remote replication query bandwidth in the Multi-Master Server replication process using two document stored NoSQL Database applications namely CouchBase and CouchDB by entering three different data models namely JSON, XML and CSV. The experimental results show that the Transfer Rate with CSV data format on CouchBase has the lowest value with an average of 111.41 kbps. CPU usage with XML data format on CouchBase has the lowest value with an average of 13.89%. Memory usage with JSON data format on CouchBase has the lowest value with an average of 1.68%. Query Execution Time Create with XML data format on CouchBase has the lowest value with an average of 1.16 seconds. Query Execution Time Insert on CouchBase with CSV data format has the lowest value with an average of 33.28 seconds. Bandwidth Query Execution Time Insert with CSV data format on CouchBase has the lowest value with an average of 24.78 mb. Query Execution Time Delete with JSON, XML and CSV data formats on CouchDB has the lowest value with an average of 1.5 seconds. Further research recommendations are to test Multi-Master Server Replication using other data formats and parameters or test the performance of data migration to other Databases with different data formats.

Downloads

Download data is not yet available.

References

L. Bao, J. Yang, C. Q. Wu, H. Qi, X. Zhang, and S. Cai, “XML2HBase: Storing and querying large collections of XML documents using a NoSQL Database system,” J Parallel Distrib Comput, vol. 161, pp. 83–99, Mar. 2022, doi: 10.1016/j.jpdc.2021.11.003.

S. Kim, Y. Hoang, T. T. Yu, and Y. S. Kanwar, “GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of Geospatial NoSQL Databases,” Big Data Research, vol. 31, p. 100368, Feb. 2023, doi: 10.1016/j.bdr.2023.100368.

C. A. Győrödi, D. V. Dumşe-Burescu, D. R. Zmaranda, R. Ş. Győrödi, G. A. Gabor, and G. D. Pecherle, “Performance Analysis of NoSQL and Relational Databases with CouchDB and MySQL for Application’s Data Storage,” Applied Sciences, vol. 10, no. 23, p. 8524, Nov. 2020, doi: 10.3390/app10238524.

K. Mavrogiorgos, A. Kiourtis, A. Mavrogiorgou, and D. Kyriazis, “A Comparative Study of MongoDB, ArangoDB and CouchDB for Big Data Storage,” in 2021 5th International Conference on Cloud and Big Data Computing (ICCBDC), New York, NY, USA: ACM, Aug. 2021, pp. 8–14. doi: 10.1145/3481646.3481648.

I. Carvalho, F. Sá, and J. Bernardino, “Performance Evaluation of NoSQL Document Databases: CouchBase, CouchDB, and MongoDB,” Algorithms, vol. 16, no. 2, p. 78, Feb. 2023, doi: 10.3390/a16020078.

- Rianto, M. A. Rifansyah, R. Gunawan, I. Darmawan, and A. Rahmatulloh, “Comparison of JSON and XML Data Formats in Document Stored NoSQL Database Replication Processes,” Int J Adv Sci Eng Inf Technol, vol. 11, no. 3, pp. 1150–1156, Jun. 2021, doi: 10.18517/ijaseit.11.3.11570.

Z. Brahmia, H. Hamrouni, and R. Bouaziz, “XML data manipulation in conventional and temporal XML Databases: A survey,” Comput Sci Rev, vol. 36, p. 100231, May 2020, doi: 10.1016/j.cosrev.2020.100231.

M. Aggarwal, S. B. Bajaj, and V. Jaglan, “Performance Analysis of Degree of Redundancy for Replication in Distributed Database System,” in 2022 1st International Conference on Informatics (ICI), IEEE, Apr. 2022, pp. 176–180. doi: 10.1109/ICI53355.2022.9786886.

F. Castro-Medina, L. Rodriguez-Mazahua, A. López-Chau, M. A. Abud-Figueroa, and G. Alor-Hernández, “FRAGMENT: A Web Application for Database Fragmentation, Allocation and Replication over a Cloud Environment,” IEEE Latin America Transactions, vol. 18, no. 06, pp. 1126–1134, Jun. 2020, doi: 10.1109/TLA.2020.9099751.

S. Lee et al., “X-SSD: A Storage System with Native Support for Database Logging and Replication,” in Proceedings of the 2022 International Conference on Management of Data, New York, NY, USA: ACM, Jun. 2022, pp. 988–1002. doi: 10.1145/3514221.3526188.

P. Nagaraj, V. Muneeswaran, A. V. S. R. Pavan Naidu, N. Shanmukh, P. V. Kumar, and G. S. Satyanarayana, “Automated E-Commerce Price Comparison Website using PHP, XAMPP, MongoDB, Django, and Web Scrapping,” in 2023 International Conference on Computer Communication and Informatics (ICCCI), IEEE, Jan. 2023, pp. 1–6. doi: 10.1109/ICCCI56745.2023.10128573.

D. Yedilkhan, A. Mukasheva, D. Bissengaliyeva, and Y. Suynullayev, “Performance Analysis of Scaling NoSQL vs SQL: A Comparative Study of MongoDB, Cassandra, and PostgreSQL,” in 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), IEEE, May 2023, pp. 479–483. doi: 10.1109/SIST58284.2023.10223568.

L. Chen, A. Davoudian, and M. Liu, “A workload-driven method for designing aggregate-oriented NoSQL Databases,” Data Knowl Eng, vol. 142, p. 102089, Nov. 2022, doi: 10.1016/j.datak.2022.102089.

C. J. F. Candel, D. Sevilla Ruiz, and J. J. García-Molina, “A unified metamodel for NoSQL and relational Databases,” Inf Syst, vol. 104, p. 101898, Feb. 2022, doi: 10.1016/j.is.2021.101898.

A. Pellegrini, “Replication of Computational Results Report for ‘ Green Simulation with Database Monte Carlo ,’” ACM Transactions on Modeling and Computer Simulation, vol. 31, no. 1, pp. 1–4, Jan. 2021, doi: 10.1145/3426823.

Y. Lu, X. Yu, L. Cao, and S. Madden, “Epoch-based commit and replication in distributed OLTP Databases,” Proceedings of the VLDB Endowment, vol. 14, no. 5, pp. 743–756, Jan. 2021, doi: 10.14778/3446095.3446098.

R. Mucha, B. Balis, C. Grigoras, and J. Kitowski, “Database Replication for Disconnected Operations with Quasi Real-Time Synchronization,” Computer Science, vol. 24, no. 3, Oct. 2023, doi: 10.7494/csci.2023.24.3.4831.

Y.-H. Zeng, Z.-N. Yin, H. Luo, and F. Gao, “DeOri 10.0: An Updated Database of Experimentally Identified Eukaryotic Replication Origins,” Genomics Proteomics Bioinformatics, vol. 22, no. 5, Dec. 2024, doi: 10.1093/gpbjnl/qzae076.

M. Aggarwal, S. B. Bajaj, and V. Jaglan, “Performance Analysis of Degree of Redundancy for Replication in Distributed Database System,” in 2022 1st International Conference on Informatics (ICI), IEEE, Apr. 2022, pp. 176–180. doi: 10.1109/ICI53355.2022.9786886.

M.-J. Dong, H. Luo, and F. Gao, “DoriC 12.0: an updated Database of replication origins in both complete and draft prokaryotic genomes,” Nucleic Acids Res, vol. 51, no. D1, pp. D117–D120, Jan. 2023, doi: 10.1093/nar/gkac964.

A. Menon and D. J. Mallinson, “Policy Diffusion Speed: A Replication Study Using the State Policy Innovation and Diffusion Database,” Political Studies Review, vol. 20, no. 4, pp. 702–716, Nov. 2022, doi: 10.1177/14789299211052828.

A. E. A. Raouf, A. Abo-Alian, and N. L. Badr, “A Predictive Multi-Tenant Database Migration and Replication in the Cloud Environment,” IEEE Access, vol. 9, pp. 152015–152031, 2021, doi: 10.1109/ACCESS.2021.3126582.

M. Nuriev, R. Zaripova, O. Yanova, I. Koshkina, and A. Chupaev, “Enhancing MongoDB query performance through index optimization,” E3S Web of Conferences, vol. 531, p. 03022, Jun. 2024, doi: 10.1051/e3sconf/202453103022.

A. Somasundar, M. Chilakarao, B. R. Krishnam Raju, S. Kumari Behera, C. V. Ramana, and P. K. Sethy, “MongoDB integration with Python and Node.js, Express.js,” in 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), IEEE, Jan. 2024, pp. 1–5. doi: 10.1109/ICAECT60202.2024.10469546.

T. Capris, P. Melo, N. M. Garcia, I. M. Pires, and E. Zdravevski, “Comparison of SQL and NoSQL Databases with different workloads: MongoDB vs MySQL evaluation,” in 2022 International Conference on Data Analytics for Business and Industry (ICDABI), IEEE, Oct. 2022, pp. 214–218. doi: 10.1109/ICDABI56818.2022.10041513.

P. Tripathi, M. H. Miraz, and S. Joshi, “Comparative Analysis of MongoDB and InfluxDB for Time Series Data Management in IoT Environments: A Study on Performance, Scalability, and Concurrency,” in 2023 International Conference on Computing, Networking, Telecommunications & Engineering Sciences Applications (CoNTESA), IEEE, Dec. 2023, pp. 39–42. doi: 10.1109/CoNTESA61248.2023.10384962.

A. C. F. Spengler and P. S. L. de Souza, “The impact of using CouchDB on Hyperledger Fabric performance for heterogeneous medical data storage,” in 2021 XLVII Latin American Computing Conference (CLEI), IEEE, Oct. 2021, pp. 1–10. doi: 10.1109/CLEI53233.2021.9640180.

Published
2025-02-19
How to Cite
[1]
D. K. Wibowo, A. Darmawan, and D. A. Nawangnugraeni, “A COMPARATIVE STUDY OF MULTI-MASTER REPLICATION OF NOSQL DATABASE SERVER WITH VARYING DATA FORMATS”, J. Tek. Inform. (JUTIF), vol. 6, no. 1, pp. 411-418, Feb. 2025.