COMPARATIVE ANALYSIS OF PERFORMANCE AND EFFICIENCY OF LOAD BALANCING ALGORITHMS ON INGRESS CONTROLLER

  • Ahmad Rizal Khamdani Information System, Faculty of Information Technology, University of Merdeka Malang, Indonesia
  • Ahmad Rofiqul Muslikh Information System, Faculty of Information Technology, University of Merdeka Malang, Indonesia
  • Arif Saivul Affandi Information System, Faculty of Information Technology, University of Merdeka Malang, Indonesia
Keywords: Container Orchestration, Ingress Controller, Kubernetes, Load Balancing, Load Testing

Abstract

Kubernetes has become the dominant container orchestration platform in production environments, with the ingress controller playing a critical role in managing external traffic to services within the cluster. This study aims to provide recommendations for optimal load balancing algorithms for Kubernetes production environments by analyzing and comparing the performance of four algorithms namely round robin, static-rr, least connection, and random on the HAProxy ingress controller. The research method is conducted through observation using k6 and Grafana performance test tools, as well as literature studies, with measurements including total requests, throughput, latency, CPU usage, and memory at various levels of user load. The data was analyzed using descriptive statistical techniques, normality test, homogeneity test, and tests for group differences using one-way ANOVA or Kruskal-Wallis H. The results show that static-rr excels in throughput, total requests, and CPU and memory efficiency at high load, while least connection is more effective for latency at low load. Round robin and random showed stable performance at low load but less optimal at high load. The conclusion of this study is that choosing the right load balancing algorithm depends on the load characteristics and desired performance metrics, to ensure optimal Kubernetes performance under various load scenarios in production environments.

Downloads

Download data is not yet available.

References

“CNCF Annual Survey 2023,” CNCF. Accessed: Aug. 21, 2024. [Online]. Available: https://www.cncf.io/reports/cncf-annual-survey-2023/

A. R. Ekaputra and A. S. Affandi, “Pemanfaatan layanan cloud computing dan docker container untuk meningkatkan kinerja aplikasi web,” J. of Information System and Application Development, vol. 1, no. 2, pp. 138–147, Sep. 2023, doi: 10.26905/jisad.v1i2.11084.

Q.-M. Nguyen, L.-A. Phan, and T. Kim, “Load-Balancing of Kubernetes-Based Edge Computing Infrastructure Using Resource Adaptive Proxy,” Sensors, vol. 22, no. 8, p. 2869, Apr. 2022, doi: 10.3390/s22082869.

I. Vasireddy, G. Ramya, and P. Kandi, “Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and Challenges,” IJIREM, vol. 10, no. 6, pp. 49–54, Dec. 2023, doi: 10.55524/ijirem.2023.10.6.7.

A. A. J. Sinlae, M. Bagir, and M. H. Prayitno, “Analisis Perbandingan Algoritma Round-Robin dengan Least-Connection Terhadap Peningkatan Nilai Throughput Pada Layanan Web Server,” Jur. Ris. Kom., vol. 9, no. 5, p. 1584, Oct. 2022, doi: 10.30865/jurikom.v9i5.4995.

N. S. ALFIANY, “Analisis Perbandingan Kinerja Ingress Controller KONG Dan ISTIO Pada Kubernetes Cluster,” skripsi, Institut Teknologi Telkom Purwokerto, 2023. Accessed: Aug. 24, 2024. [Online]. Available: https://repository.ittelkom-pwt.ac.id/10017/

R. D. Marcus, R. A. Saputro, and F. Y. Pamuji, “Optimasi Jaringan Routing Open Shortest Path First Dengan Menggunakan Multiprotocol Label Switching,” Bri, vol. 5, no. 3, p. 612, Aug. 2020, doi: 10.28926/briliant.v5i3.486.

S. D. Riskiono and D. Pasha, “ANALISIS METODE LOAD BALANCING DALAM MENINGKATKAN KINERJA WEBSITE E-LEARNING,” JTI, vol. 14, no. 1, p. 22, Jan. 2020, doi: 10.33365/jti.v14i1.466.

P. P. Desa and F. Dewanta, “ANALISIS LOAD BALANCING MENGGUNAKAN ALGORTIMA OPTIMASI KOLONI SEMUT DAN LEAST CONNECTION PADA JARINGAN SOFTWARE DEFINED NETWORK,” Apr. 2021.

M. Usman Sana and Z. Li, “Efficiency aware scheduling techniques in cloud computing: a descriptive literature review,” PeerJ Computer Science, vol. 7, p. e509, May 2021, doi: 10.7717/peerj-cs.509.

A. Solehudin, R. Mayasari, G. Garno, and A. Susilo Yuda Irawan, “Perbandingan Algoritma Round Robin dan Algoritma Least Connection pada Haproxy untuk Load Balancing Web Server,” sys, vol. 2, no. 1, p. 21, Apr. 2020, doi: 10.35706/sys.v2i1.3634.

H. Luthfi, R. Tulloh, and M. Iqbal, “Perancangan Dan Implementasi Load Balancing Menggunakan Algoritma Least Connection Dan Ip Hash Pada Kubernetes,” Aug. 2023.

C. Rawls and M. A. Salehi, “Load Balancer Tuning: Comparative Analysis of HAProxy Load Balancing Methods,” Dec. 29, 2022, arXiv: arXiv:2212.14198. Accessed: Sep. 27, 2024. [Online]. Available: http://arxiv.org/abs/2212.14198

I. M. Ibrahim et al., “Web Server Performance Improvement Using Dynamic Load Balancing Techniques: A Review,” AJRCoS, pp. 47–62, Jun. 2021, doi: 10.9734/ajrcos/2021/v10i130234.

S. Pargaonkar, “A Comprehensive Review of Performance Testing Methodologies and Best Practices: Software Quality Engineering,” International Journal of Science and Research (IJSR), vol. 12, pp. 2008–2014, Nov. 2023, doi: 10.21275/SR23822111402.

Sulastri, N. Kamila, and I. Rahmawati, “Efektivitas Teknik Mindfulness Untuk Mengatasi Insomania Pada Mahasiswa,” Journal of Psychology Today, vol. 1, no. 4, Art. no. 4, Dec. 2023.

A. Rahayu, E. Ernawati, and R. A. Rahim, “PERBANDINGAN HASIL BELAJAR MATEMATIKA DENGAN MENGGUNAKAN MODEL NUMBER HEAD TOGETHER (NHT) DAN THINK PAIR SHARE (TPS) BERBASIS MEDIA WHATSAPP,” Jtm, vol. 1, no. 2, pp. 12–18, Jan. 2021, doi: 10.47435/jtm.v1i2.468.

O. Pramadika and D. W. Chandra, “Provisioning Google Kubernetes Engine (GKE) Cluster dengan Menggunakan Terraform dan Jenkins pada Dua Environment,” jipi. jurnal. ilmiah. penelitian. dan. pembelajaran. informatika., vol. 8, no. 2, pp. 597–606, May 2023, doi: 10.29100/jipi.v8i2.3630.

M. P. Hasibuan, R. Azmi, D. B. Arjuna, and S. U. Rahayu, “Analisis Pengukuran Temperatur Udara Dengan Metode Observasi,” vol. 1, 2023.

A. K. Chandrasekhar and D. A. S. Chandran, “COMPARATIVE ANALYSIS OF LOAD TESTING TOOLS,” vol. 9, no. 6, 2021.

D. Rahman, H. Amnur, and I. Rahmayuni, “Monitoring Server dengan Prometheus dan Grafana serta Notifikasi Telegram,” JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, vol. 1, no. 4, Art. no. 4, Dec. 2020.

P. Fajar and Y. I. Aviani, “Hubungan Self-Efficacy dengan Penyesuaian Diri: Sebuah Studi Literatur,” vol. 6, 2022.

M. Tarigan and D. Frintiana Silaban, “Statistika Deskriptif,” JINTAN, vol. 4, no. 2, pp. 187–195, Jul. 2024, doi: 10.51771/jintan.v4i2.859.

F. Orcan, “Parametric or Non-parametric: Skewness to Test Normality for Mean Comparison,” International Journal of Assessment Tools in Education, vol. 7, no. 2, pp. 255–265, Jun. 2020, doi: 10.21449/ijate.656077.

D. S. Rini and F. Faisal, “Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling,” vol. 11, no. 2, 2015.

R. Sianturi, “Uji homogenitas sebagai syarat pengujian analisis,” PSSA, vol. 8, no. 1, pp. 386–397, Jul. 2022, doi: 10.53565/pssa.v8i1.507.

M. Wassalwa, H. D. Siregar, K. Janani, and I. S. Harahap, “ANALISIS UJI HIPOTESIS PENELITIAN PERBANDINGAN MENGGUNAKAN STATISTIK PARAMETRIK,” Al Ittihadu, vol. 3, no. 1, Art. no. 1, 2024.

A. Indrasetianingsih, I. A. Haryanto, and P. A. Divaio, “Analisis Kruskal-Wallis untuk Mengetahui Kemampuan Literasi Siswa SMP Miftahurrohman Gresik Berdasarkan Asesmen Kompetensi Minimum,” ijmst, vol. 2, no. 1, pp. 32–36, Feb. 2024, doi: 10.31004/ijmst.v2i1.286.

E. Rohadi, A. Amalia, A. Prasetyo, M. F. Rahmat, A. Setiawan, and I. Siradjuddin, “Cluster implementation on mini Raspberry Pi computers using Round Robin Algorithm,” J. Phys.: Conf. Ser., vol. 1450, no. 1, p. 012068, Feb. 2020, doi: 10.1088/1742-6596/1450/1/012068.

Y. Permana and Y. Afrianto, “Load Balancing Method Performance Analysis on Haproxy and Router OS,” vol. 4, no. 36, 2020.

T. Wira Harjanti, H. Setiyani, and J. Trianto, “Load Balancing Analysis Using Round-Robin and Least-Connection Algorithms for Server Service Response Time,” ATCSJ, vol. 5, no. 2, pp. 40–49, Dec. 2022, doi: 10.33086/atcsj.v5i2.3743.

B. Alankar, G. Sharma, H. Kaur, R. Valverde, and V. Chang, “Experimental Setup for Investigating the Efficient Load Balancing Algorithms on Virtual Cloud,” Sensors, vol. 20, no. 24, p. 7342, Dec. 2020, doi: 10.3390/s20247342.

L. Laukka and C. Fransson, “Enhancing the performance of mobile networks using Kubernetes: Load balancing traffic by utilizing workload estimation,” 2023.

Published
2025-03-06
How to Cite
[1]
A. R. Khamdani, A. R. Muslikh, and A. S. Affandi, “COMPARATIVE ANALYSIS OF PERFORMANCE AND EFFICIENCY OF LOAD BALANCING ALGORITHMS ON INGRESS CONTROLLER”, J. Tek. Inform. (JUTIF), vol. 6, no. 1, pp. 453-468, Mar. 2025.