CLASSIFICATION OF PUBLIC SENTIMENT TOWARDS STUNTING PREVENTION PROGRAM USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE ON X APPLICATION
Abstract
Indonesia has serious health problems, one of which is stunting among children. Stunting is caused by chronic malnutrition that affects a child's physical and cognitive growth. To address its impact, the government launched a prevention program that focuses on improving nutrition, improving sanitation, and health education. Public response to these programs has varied, with some supportive and others skeptical. In the digital age, public opinion is expressed through social media, making sentiment analysis important to understand public perception. This research aims to classify public sentiment towards the stunting prevention program using Naive Bayes and Support Vector Machine (SVM) methods. Data preprocessing includes cleaning, case folding, tokenizing, stopwords, and stemming, ensuring the text data is ready for analysis. The dataset consists of 5907 tweets divided by a ratio of 80:20, resulting in 4725 tweets for training data and 1182 tweets for testing data. The analysis results show that the Naive Bayes model achieved an accuracy of 95.34% for training data and 84.52% for testing data, while SVM achieved an accuracy of 95.43% for training data and 96.74% for testing data, indicating the performance of the SVM model is better than the Naïve Bayes model. The important impact of this research is to assist policymakers in understanding the public's perception of government programs so that they can design communication strategies.
Downloads
References
I. A. Parmitha, R. Arifinia, G. K. Pangestu, N. A. Rahayu, and A. Rosidi, “Gambaran Kejadian Stunting Berdasarkan Karakteristik Ibu Pada Balita Usia 24-59 Bulan,” J. Inov. Ris. Ilmu Kesehat., vol. 15, no. 1, pp. 37–48, 2024.
Y. Haskas, “Gambaran Stunting Di Indonesia: Literatur Review,” J. Ilm. Kesehat. Diagnosis, vol. 15, no. 2, pp. 2302–2531, 2020.
F. N. Zaman, M. A. Fadhilah, M. A. Ulinuha, and K. Umam, “Menganalisis Respons Netizen Twitter Terhadap Program Makan Siang Gratis Menerapkan Nlp Metode Naïve Bayes,” J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 14, no. 3, pp. 150–233, 2024, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
R. R. S. Putri Kumala Sari, “Komparasi Algoritma Support Vector Machine dan Random Forest Untuk Analisis Sentimen Metaverse,” J. Mnemon., vol. 7, no. 1, pp. 31–39, 2024.
Eskiyaturrofikoh and R. R. Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm),” vol. 8, no. 3, pp. 110–118, 2019, doi: https://doi.org/10.29100/jipi.v9i3.5392.
Ramadhani, Ramadhanu, and Taufik Hidayat, “Metode Machine Learning untuk Klasifikasi Data Gizi Balita dengan Algoritma Naïve Bayes, KNN dan Decision Tree,” J. SIMETRIS, vol. 15, no. 1, pp. 57–68, 2024, [Online]. Available: https://jurnal.umk.ac.id/index.php/simet/article/view/10679
R. Supriyadi, N. Maulidah, A. Fauzi, H. Nalatissifa, and S. Diantika, “Penerapan Algoritma Naive Bayes dan Support Vector Machine dalam Memprediksi Autisme,” J. Swabumi, vol. 10, no. 1, p. 2022, 2022, doi: https://doi.org/10.31294/swabumi.v10i1.12294.
F. O. Dayera, Musa Bundaris Palungan, “Implementasi Algoritma Support Vector Machine Untuk Klasifikasi Status Stunting Pada Balita,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, doi: 10.33379/gtech.v8i3.4811.
Y. Mulyanto, F. Idifitriani, A. Wati, U. T. Sumbawa, D. Mining, and K. P. Tano, “Klasifikasi Data Mining Untuk Penentuan Stunting Pada Balita Menggunakan Metode Naive Bayes,” J. Mnemon., vol. 7, no. 2, pp. 119–125, 2024.
A. Setiawan and R. R. Suryono, “Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 183–192, 2024, doi: 10.29408/edumatic.v8i1.25667.
Y. Yusra and M. Fikry, “Klasifikasi Tweet E-Commerce dengan Menggunakan Metode Support Vector Machine,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 50, 2018, doi: 10.24014/coreit.v4i2.5205.
R. Mursyid, A. D. Indriyanti, J. Teknik, I. Fakultas, T. Universitas, and N. Surabaya, “Perbandingan Akurasi Metode Analisis Sentimen Untuk Evaluasi Opini Pengguna Pada Platform Media Sosial ( Studi Kasus : Twitter ),” vol. 06, pp. 371–383, 2024.
W. Ningsih, B. Alfianda, Rahmaddeni, and D. Wulandari, “Perbandingan Algoritma SVM dan Naive Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia,” vol. 4, no. 2, pp. 556–562, 2024.
Harliana and D. Anggraini, “Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah,” J. Inform. Komputer, Bisnis dan Manaj., vol. 21, no. 2, pp. 38–45, 2023, doi: 10.61805/fahma.v21i2.16.
A. Sudrajat, N. Mulyani, and N. Marpaung, “Sistem Pendukung Keputusan Penentuan Kelayakan Penangguhan Kredit Nasabah menggunakan Naïve Bayes,” Edumatic J. Pendidik. Inform., vol. 6, no. 2, pp. 205–214, 2022, doi: 10.29408/edumatic.v6i2.6298.
R. Fatmasari, R. Septiani, T. Pinem, D. Fabiyanto, and W. Gata, “Implementasi Algoritma BERT Pada Komentar Layanan Akademik dan Non Akademik Universitas Terbuka di Media Sosial,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 5, p. 96, Jan. 2024, doi: 10.30872/jsakti.v5i2.13915.
A. S. Pamungkas and N. Cahyono, “Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 1–10, 2024, doi: 10.29408/edumatic.v8i1.24114.
S. Styawati, A. R. Isnain, N. Hendrastuty, and L. Andraini, “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis,” J. Inform. J. Pengemb. IT, vol. 6, no. 1, pp. 56–60, 2021, doi: 10.30591/jpit.v6i1.3245.
D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indones. J. Comput. Sci., vol. 12, Aug. 2023, doi: 10.33022/ijcs.v12i4.3341.
S. Lestari and S. Berliani, “Analisis Sentimen Masyarakat Terhadap Isu Pecat Sri Mulyani Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” vol. 5, no. 3, pp. 951–960, 2024, doi: https://doi.org/10.55338/saintek.v5i3.2746.
M. U. Albab, Y. Karuniawati P, and M. N. Fawaiq, “Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic,” J. Transform., vol. 20, no. 2, pp. 1–10, 2023, [Online]. Available: https://journals.usm.ac.id/index.php/transformatika/■page1
Sri Diantika, Windu Gata, and Hiya Nalatissifa, “Komparasi Algoritma SVM Dan Naive Bayes Untuk Klasifikasi Kestabilan Jaringan Listrik,” Elkom J. Elektron. dan Komput., vol. 14, no. 1, pp. 10–15, 2021, doi: 10.51903/elkom.v14i1.319.
Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.
Z. Amri, K. Kusrini, and K. Kusnawi, “Prediksi Tingkat Kelulusan Mahasiswa menggunakan Algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM,” Edumatic J. Pendidik. Inform., vol. 7, no. 2, pp. 187–196, 2023, doi: 10.29408/edumatic.v7i2.18620.
Copyright (c) 2024 Desi Fitria, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.