SOCIAL DISTANCING DETECTION FINDING OPTIMAL ANGLE WITH YOLO V3 DEEP LEARNING METHOD
Abstract
The COVID-19 pandemic has had a profound impact on all aspects of society. One of the implementations that the government has so far carried out is using masks and maintaining social distance. Over time, social distancing is difficult to control because people are now getting booster vaccines, but some have not. One way to overcome this problem is with a social distance detector system that detects the number of people and the distance of human objects from one another in an area. This study aims to apply in the office area, or the public. This research is one of the developments of a social distancing detector application that produces an optimal angle in using the application. So the program can detect the entirety of the object with optimal accuracy. Angle is very influential in taking the image to be processed in the system. This study uses the python language with the YOLOv3 library. This study got the best results,and the mean average precision in 90%:10% didapatkan dengan learning rate 0,001 dengan nilai mAP 54,11%, deteksi pada saaat penggujian sebesar 100%. Percobaan sudut terdapat 00.150.300, 450.600 dengan total 50 data video testing. Sudut optimal yang didapatkan pada penelitian ini adalah 00.150.300. Hal ini membuktikan bahwa sudut pengambilan video atau peletakan kamera sistem social distancing.
Downloads
References
WHO Indonesia, “Coronavirus Disease Situation Report World Health Organization,” 2020
M. Pawar, “The Global Impact of and Responses to the COVID-19 Pandemic,” The International Journal of Community and Social Development, vol. 2, no. 2, pp. 111–120, 2020, doi: 10.1177/2516602620938542.
Adhinata, F. Dharma, Rakhmadan, D. Putra, A. J. T. Segara. “YOLO Algorithm for Detecting People in Social Distancing System”. TRANSFORMATIKA, ISSN: 1693-3656,Vol 19, No.1, July 2021, pp. 1-7.
A. H. Ahamad, N. Zaini, and M. F. A. Latip, “Person Detection for Social Distancing and Safety Violation Alert based on Segmented ROI,” Proceedings - 10th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2020, no. August, pp. 113–118, 2020, doi: 10.1109/ICCSCE50387.2020.9204934.
J. Redmon and A. Farhadi, “Yolov3 : An incremental improvement”, arXiv Prepr. arXiv200.10934, 2020.
S. Geethapriya, N. Duraimurugan, S. P. Chokkalingam, “Real-Time Object Detection with Yolo” International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8, Issue-3S, February 2019.
H. Hammam, A. Asyhar, S. A. Wibowo, and G. Budiman, “Implementasi Dan Analisis Performansi Metode You Only Look Once ( Yolo ) Sebagai Sensor Pornografi Pada Video”. E-Proceeding of Engginering :ISSN: 2355-9365, Vol 7, No.2 Agustus 2020 Page 3631.
M. I. Hermawan, I. I. Tritoasmoro, N. Ibrahim, “Pengaturan Lampu Lalu Lintas Berdasarkan Kepadatan Kendaraan Menggunakan Metode Yolo”. Jurnal Edukomputika. V.811.47837. 2021
S. Jupiyandi, F. R. Saniputra, Y. Pratama, M. R. Dharmawan, I. Cholissodin, ”Pengembangan Deteksi CitraMobil untuk Mengetahui Jumlah TempatParkir Menggunakan CUDA dan Modified YOLO”. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(4), 413. https://doi.org/10.25126/jtiik.2019
P. Nurtantio, Andono, T.Sutojo, Muljono. 2017. Pengolahan Citra Digital. Yogyakarta: ANDI.
T. A. A. H. Kusuma, K. Usman, S. Saidah, "People Counting for Public Transportations Using You Only Look Once Method” , Jurnal Teknik Informatika(JUTIF), Vol.2 No.1, pp. 57-66, 2021.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, realtime object detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91
M. Junker, R. Hoch, and A. Dengel, “On the evaluation of document analysis components by recall, precision, and accuracy,” Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, pp. 717–720, 1999, doi: 10.1109/ICDAR.1999.791887.
B. Benfold and I. Reid, “Stable multi-target tracking in real-time surveillance video,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3457–3464, 2011, doi: 10.1109/CVPR.2011.5995667.
Fardiasyah., A. Fahmi, N. Iriawan and W. S. Winahju. “Deteksi Kapal di Laut Indonesia Menggunakan YOLOv3”. Jurnal Sains dan Seni ITS. Vol.10 No.1 (2021), 2337-3520(2301-928X Print)
M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square”, Jurnal Informatik: Jurnal Pengembangan IT (JPIT), Vol.04, No.01, Januari 2019, pp. 20-21, 2019.
Xiaoyue Jiang, Abdenour Hadid, Yanwei Pang, Eric Granger, Xiaoyi Feng, “Deep Learning in Object Detection and Recognition”, pp. 1-3, 2019.
Adarsh, P., Rathi, P., Kumar, M., YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. 2020 6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020 687–694.
Copyright (c) 2022 Mutiara Dwi A
This work is licensed under a Creative Commons Attribution 4.0 International License.