Sentiment Analysis of Shoe Product Reviews on Indonesian E-Commerce Platform Using Lexicon Based and Support Vector Machine

Authors

  • Fitriani Muttakin Information System, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Nadila Andrika Information System, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Salsabila Information System, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.2.3800

Keywords:

E-Commerce, Lexicon-Based, Sentiment Analysis, Shoe Fashion, Support Vector Machine

Abstract

The rapid development of e-commerce has encouraged people, especially young people, to switch from offline shopping to online platforms such as Shopee that offer fashion products, including shoes, at affordable prices and a wide selection. This phenomenon creates great opportunities for sellers, but also poses challenges related to analyzing product quality contained in customer reviews. The large number of scattered and unstructured reviews makes it difficult for potential buyers to accurately assess products. Therefore, this study aims to analyze the sentiment of 10,323 shoe product reviews on Shopee using the Support Vector Machine (SVM) algorithm and the Lexicon-Based method. SVM was chosen because of its advantage in achieving high accuracy in text classification, with accuracy results reaching 92.62%. The Lexicon-Based method is used to detect specific sentiment words, which provides deeper insight into consumer opinions on shoe products. The analysis results show that shoe product reviews are dominated by positive sentiments, reflecting a high level of customer satisfaction. The findings not only provide guidance for sellers in designing more effective marketing strategies, but also help potential buyers in making better decisions based on objective sentiment analysis. In addition, this study contributes to the literature related to sentiment analysis with SVM in the e-commerce domain, especially for fashion shoes. Thus, the combined use of SVM and Lexicon-Based methods shows great potential in providing valuable insights into consumer preferences as well as increasing customer confidence in choosing shoe products in the e-commerce.

Downloads

Download data is not yet available.

References

L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.

J. lee and Nguyen, “ASEAN Digital Generation Report: Digital Financial Inclusion,” Word Economic Forum, Dec. 2022. [Online]. Available: https://www.sea.com/sustainability

N. P. Rahmayanti, “Pengaruh Marketplace dan Pembayaran Digital Terhadap Tingkat Penjualan UMKM Di Kota Banjarmasin,” Al-KALAM J. Komun. BISNIS DAN Manaj., vol. 10, no. 1, p. 28, Jan. 2023, doi: 10.31602/al-kalam.v10i1.9095.

L. Gunawan, M. S. Anggreainy, L. Wihan, Santy, G. Y. Lesmana, and S. Yusuf, “Support vector machine based emotional analysis of restaurant reviews,” Procedia Comput. Sci., vol. 216, pp. 479–484, 2023, doi: 10.1016/j.procs.2022.12.160.

W. Agustiono and A. K. Darmawan, “E-Marketplace Selection for Indonesian MSMEs: A Sentiment Analysis Approach Combining Lexicon-Based and Support Vector Machine,” in 2023 IEEE 9th Information Technology International Seminar (ITIS), Batu Malang, Indonesia: IEEE, Oct. 2023, pp. 1–

doi: 10.1109/ITIS59651.2023.10420382.

F. A. Nugraha, N. H. Harani, and R. Habibi, “Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Kreatif Industri Nusantara.,” in 1. , Kreatif Industri Nusantara, 2020.

I. Hidayah, A. E. Permanasari, and N. Woro Wijayanti, “Sentiment Analysis on Product Review using Support Vector Machine (SVM),” in 2019 5th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia: IEEE, Jul. 2019, pp. 1–4. doi: 10.1109/ICST47872.2019.9166189.

A. D. Riyanto, A. M. Wahid, and A. A. Pratiwi, “ANALYSIS OF FACTORS DETERMINING STUDENT SATISFACTION USING DECISION TREE, RANDOM FOREST, SVM, AND NEURAL NETWORKS: A COMPARATIVE STUDY”.

A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 207–212, Sep. 2023, doi: 10.30591/jpit.v8i3.5064.

Ratih Puspitasari, Y. Findawati, and M. A. Rosid, “SENTIMENT ANALYSIS OF POST-COVID-19 INFLATION BASED ON TWITTER USING THE K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION METHODS,” J. Tek. Inform. Jutif, vol. 4, no. 4, pp. 669–679, Aug. 2023, doi: 10.52436/1.jutif.2023.4.4.801.

I. Yunanto and S. Yulianto, “TWITTER SENTIMENT ANALYSIS PEDULILINDUNGI APPLICATION USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE,” J. Tek. Inform. Jutif, vol. 3, no. 4, pp. 807–814, Aug. 2022, doi: 10.20884/1.jutif.2022.3.4.292.

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, Jan. 2023, doi: 10.37905/jjeee.v5i1.16830.

S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J. Sarkar, and M. Dey, “A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews,” in 2020 International Conference on Contemporary Computing and Applications (IC3A), Lucknow, India: IEEE, Feb. 2020, pp. 217–220. doi: 10.1109/IC3A48958.2020.233300.

S. Watmah, S. Suryanto, and M. Martias, “Komparasi Metode K-NN, Support Vector Machine Dan Random Forest Pada E-Commerce Shopee,” INSANtek, vol. 2, no. 1, pp. 15–21, Jun. 2021, doi: 10.31294/instk.v2i1.419.

H. Syahputra, “Sentiment Analysis of Community Opinion on Online Store in Indonesia on Twitter using Support Vector Machine Algorithm (SVM),” J. Phys. Conf. Ser., vol. 1819, no. 1, p. 012030, Mar. 2021, doi: 10.1088/1742-6596/1819/1/012030.

H. Syah and A. Witanti, “ANALISIS SENTIMEN MASYARAKAT TERHADAP VAKSINASI COVID-

PADA MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR

MACHINE (SVM),” J. Sist. Inf. Dan Inform. Simika, vol. 5, no. 1, pp. 59–67, Feb. 2022, doi: 10.47080/simika.v5i1.1411.

H. G. Sulistio and A. Handojo, “Aspect-Based Sentiment Analysis pada Ulasan E- Commerce dengan Metode Support Vector Machine untuk Mendapatkan Informasi Sentimen dari Beberapa Aspek,” vol. 10, no. 2, 2022.

K. Mehmood, D. Essam, K. Shafi, and M. K. Malik, “An unsupervised lexical normalization for Roman Hindi and Urdu sentiment analysis,” Inf. Process. Manag., vol. 57, no. 6, p. 102368, Nov. 2020, doi: 10.1016/j.ipm.2020.102368.

A. J. Putri, A. S. Syafira, M. E. Purbaya, and D. Purnomo, “Analisis Sentimen E-Commerce Lazada pada Jejaring Sosial Twitter Menggunakan Algoritma Support Vector Machine,” J. TRINISTIK J. Tek. Ind. Bisnis Digit. Dan Tek. Logist., vol. 1, no. 1, pp. 16–21, Mar. 2022, doi: 10.20895/trinistik.v1i1.447.

R. Ulgasesa, A. B. P. Negara, and T. Tursina, “Pengaruh Stemming Terhadap Performa Klasifikasi Sentimen Masyarakat Tentang Kebijakan New Normal,” J. Sist. Dan Teknol. Inf. JustIN, vol. 10, no. 3, p. 286, Sep. 2022, doi: 10.26418/justin.v10i3.53880.

H. T. Ismet, T. Mustaqim, and D. Purwitasari, “Aspect Based Sentiment Analysis of Product Review Using Memory Network,” Sci. J. Inform., vol. 9, no. 1, pp. 73–83, May 2022, doi: 10.15294/sji.v9i1.34094.

D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon: Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24–33, Mar. 2021, doi: 10.57152/malcom.v1i1.20.

W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” vol. 2, pp. 4704–4713, Nov. 2018.

A. Deolika, K. Kusrini, and E. T. Luthfi, “ANALISIS PEMBOBOTAN KATA PADA KLASIFIKASI

TEXT MINING,” J. Teknol. Inf., vol. 3, no. 2, p. 179, Dec. 2019, doi: 10.36294/jurti.v3i2.1077.

H. Nuraliza, O. N. Pratiwi, and F. Hamami, “Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance,” no. 1, 2022.

Additional Files

Published

2025-04-26

How to Cite

[1]
F. . Muttakin, N. . Andrika, and S. Salsabila, “Sentiment Analysis of Shoe Product Reviews on Indonesian E-Commerce Platform Using Lexicon Based and Support Vector Machine”, J. Tek. Inform. (JUTIF), vol. 6, no. 2, pp. 839–854, Apr. 2025.