Prediction Of Clay Mining Production Value Using Linear Regression Model With Multi-Swarm Particle Swarm Optimization
DOI:
https://doi.org/10.52436/1.jutif.2025.6.3.3443Keywords:
linear regression, mining production, multi-swarm, particle swarm optimizationAbstract
The progress of a nation or a country can be recognized from its income through various industries inside. Mining refers to one of the most advanced industries in Indonesia. The majority of mining in Indonesia is open-pit mining which is exposed directly to the sky. This study focuses on modeling data from rainfall, working hours, and production yields. It employed the Multi-Swarm Particle Swarm Optimization (MSPSO) algorithm to find multiple linear regression modeling by minimizing the Mean Squared Error (MSE) value. The value for the production results was then predicted using the existing multiple linear regression model. In terms of testing, the best model having an MSE of 288.0656 occurred at the parameters of Npop 180, acceleration coefficient 1 by 0.7, acceleration coefficient 2 by 0.7, acceleration coefficient 3 by 0.7, wmin 4, wmax 9 within 100 iterations.
Downloads
References
L. Utamakno, A. Budianto, and E. Priambodo, “Analisa Penurunan Produksi Lempung Terhadap Pengaruh Curah Hujan dengan Metode Regresi Linier,” Promine, vol. 6, no. 2, pp. 1–4, 2019, doi: 10.33019/promine.v6i2.777.
B. Karyadi, “Pemanfaatan Kecerdasan Buatan dalam Mendukung Pembelajaran Mandiri,” Educ. J. Teknol. Pendidik., vol. 8, no. 2, pp. 253–258, 2023, doi: 10.32832/educate.v8i02.14843.
T. P. Nugrahanti, N. Puspitasari, and I. R. Andaningsih, “Transformasi Praktik Akuntansi Melalui Teknologi: Peran Kecerdasan Buatan, Analisis Data, dan Blockchain dalam Otomatisasi Proses Akuntansi,” J. Akunt. Dan Keuang. West Sci., vol. 2, no. 03, pp. 213–221, 2023, doi: 10.58812/jakws.v2i03.644.
P. Yang, S. Untuk, and P. Mahasiswa, “Pemanfaatan Kecerdasan Buatan pada Algoritma K-Means Klastering dan Sentiment Analysis Terhadap Strategi Promosi yang Sukses untuk Penerimaan Mahasiswa Baru,” J. Sist. Inf. Univ. Suryadarma, vol. 11, no. 1, pp. 1–6, 2014, doi: 10.35968/jsi.v11i1.1120.
A. A. Permana et al., Machine Learning, vol. 45, no. 13. 2023.
Harsiti, Z. Muttaqin, and E. Srihartini, “Penerapan Metode Regresi Linier Sederhana untuk Prediksi Persediaan Obat Jenis Tablet,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 1, pp. 12–16, 2022, doi: 10.30656/jsii.v9i1.4426.
C. A. Rahmat, K. Kurniabudi, and Y. Novianto, “Penerapan Metode Regresi Linier Berganda Untuk Mengestimasi Laju Pertumbuhan Penduduk Kabupaten Musi Banyuasin,” J. Inform. dan Rekayasa Komput., vol. 3, no. 1, pp. 359–369, 2023, doi: 10.33998/jakakom.2023.3.1.732.
T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022, doi: 10.1109/ACCESS.2022.3142859.
D. Chaerullah, I. Chalid, and A. Solichin, “Analysis of Implementation of Particle Swarm Optimization (PSO) Method on Lecturers Assignments to Students,” J. Tek. Inform., vol. 4, no. 5, pp. 1151–1156, 2023, doi: 10.52436/1.jutif.2023.4.5.1002.
A. M. Rizki and A. L. Nurlaili, “Algoritme Particle Swarm Optimization (PSO) untuk Optimasi Perencanaan Produksi Agregat Multi-Site pada Industri Tekstil Rumahan,” J. Comput. Electron. Telecommun., vol. 1, no. 2, 2021, doi: 10.52435/complete.v1i2.73.
A. M. Rizki, G. E. Yuliastuti, W. F. Mahmudy, and I. P. Tama, “Hybridization of Particle Swarm Optimization and Variable Neighborhood Search for Multi-Site Aggregates Production Planning in the Home Textile Industry,” in Proceeding - IEEE 9th Information Technology International Seminar, ITIS 2023, 2023, pp. 1–5, doi: 10.1109/ITIS59651.2023.10420362.
A. P. Wibawa, W. F. Mahmudy, A. M. Rizki, G. E. Yuliastuti, and I. P. Tama, “Multi-Site Aggregate Production Planning Using Particle Swarm Optimization,” J. Eng. Proj. Prod. Manag., vol. 12, no. 1, pp. 62–69, 2022, doi: 10.32738/JEPPM-2022-0006.
H. Zhou, Z.-H. Zhan, Z.-X. Yang, and X. Wei, “AMPSO: Artificial Multi-Swarm Particle Swarm Optimization,” Neural Evol. Comput., no. 112, 2020.
D. F. Surco, D. H. Macowski, J. G. L. Coral, F. A. R. Cardoso, T. P. B. Vecchi, and M. A. S. S. Ravagnani, “Multi-Swarm Optimizer Applied in Water Distribution Networks,” Desalin. Water Treat., vol. 161, pp. 1–13, 2019, doi: 10.5004/dwt.2019.24146.
O. Niyomubyeyi, T. E. Sicuaio, J. I. D. González, P. Pilesjö, and A. Mansourian, “A Comparative Study of Four Metaheuristic Algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for Evacuation Planning,” Algorithms, vol. 13, no. 1, 2020, doi: 10.3390/a13010016.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gusti Eka Yuliastuti, Muchamad Kurniawan, Dimas Pratikto, Mochamad Rizky Moneter

This work is licensed under a Creative Commons Attribution 4.0 International License.