IMPLEMENTATION OF MACHINE LEARNING ON EMPLOYEE ATTRITION BASED ON PERFORMANCE PARAMETERS USING PARTICLE SWARM OPTIMIZATION AND ENSEMBLE CLASSIFER METHODS

  • Difari Afreyna Fauziah System and Information Technology, Faculty Of Science, Technology and Industry, Institute Technology and Science Mandala, Indonesia
  • Agung Muliawan Software Engineering, Faculty Of Science, Technology and Industry, Institute Technology and Science Mandala, Indonesia
  • Muhaimin Dimyati Management, Faculty of Economics and Business, Institute Technology and Science Mandala, Indonesia
Keywords: Employee Attrition, Employee Retention, Employee Performance, Highest Accuracy, Machine learning

Abstract

This research aims to apply machine learning to predict the start of employee attrition by considering performance parameters and other related factors in the company environment. Employee attrition refers to employee turnover in an organization for various reasons such as resignation, moving, retirement, and so on. This research uses a dataset originating from the IBM HR Analytics Employee Attrition dataset available on Kaggle (https://www.kaggle.com/) which consists of 35 attributes. Particle Swarm Optimization (PSO) method is a dimension reduction method to improve the efficiency and performance of machine learning models by reducing unnecessary data. The machine learning approaches used in the early prediction of employee attrition in this research are Support Vector Machine, Deep Learning and Neural Network methods. This research will combine the dimensionality reduction process with machine learning to obtain employee attrition prediction results that are optimized using the Ensemble method, namely Bagging and Boosting to increase the accuracy value of the prediction results. The results of this research show that applying dimensionality reduction using the PSO method can improve the accuracy of results on the IBM HR Analytics Employee Attrition dataset. The best accuracy in attrition prediction was obtained by the Deep Learning method with an accuracy value of 86.94%, a precision value of 88.90%, and a recall value of 96.40% after combining it with PSO and optimizing with Bagging.

Downloads

Download data is not yet available.

References

T. H. L. Tulus, A. Id Hadiana, and I. Santikarama, “Sistem Prediksi Awal Terhadap Atrisi Karyawan Menggunakan Algoritma C4.5,” Informatics Digit. Expert, vol. 4, no. 1, pp. 18–24, 2022, doi: 10.36423/index.v4i1.882.

P. K. Jain, M. Jain, and R. Pamula, “Explaining and predicting employees’ attrition: a machine learning approach,” SN Appl. Sci., vol. 2, no. 4, pp. 1–11, 2020, doi: 10.1007/s42452-020-2519-4.

N. Mansor, N. S. Sani, and M. Aliff, “Machine Learning for Predicting Employee Attrition,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 11, pp. 435–445, 2021, doi: 10.14569/IJACSA.2021.0121149.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.

D. Afreyna Fauziah, A. Maududie, and I. Nuritha, “Klasifikasi Berita Politik Menggunakan Algoritma K-nearst Neighbor (Classification of Political News Content using K-Nearest Neighbor),” Berk. Sainstek, vol. 6, pp. 106–114, 2018, doi: https://doi.org/10.19184/bst.v6i2.9256.

A. Muliawan, A. Rizal, and S. Hadiyoso, “Heart Disease Prediction Based on Physiological Parameters Using Ensemble Classifier and Parameter Optimization,” J. Appl. Eng. Technol. Sci., vol. 5, no. 1, pp. 258–267, 2023, doi: 10.37385/jaets.v5i1.2169.

A. Raza, K. Munir, M. Almutairi, F. Younas, M. Muhammad, and S. Fareed, “Predicting Employee Attrition Using Machine Learning Approaches,” Appl. Sci., 2022, doi: https://doi.org/10.3390/app12136424.

İ. ERSÖZ KAYA and O. KORKMAZ, “Machine Learning Approach for Predicting Employee Attrition and Factors Leading to Attrition,” Çukurova Üniversitesi Mühendislik Fakültesi Derg., vol. 36, no. 4, pp. 913–928, 2021, doi: 10.21605/cukurovaumfd.1040487.

F. Ozdemir, M. Coskun, C. Gezer, and V. Cagri Gungor, “Assessing Employee Attrition Using Classifications Algorithms,” ACM Int. Conf. Proceeding Ser., pp. 118–122, 2020, doi: 10.1145/3404663.3404681.

J. Hu, R. Zhang, H. Zhu, and L. He, “A Novel Classification Method Based on Particle Swarm Optimization,” Proc. 2022 5th Int. Conf. Artif. Intell. Pattern Recognit., 2022, doi: https://doi.org/10.1145/3573942.3573983.

M. P. Behera, A. Sarangi, D. Mishra, and S. K. Sarangi, “A Hybrid Machine Learning algorithm for Heart and Liver Disease Prediction Using Modified Particle Swarm Optimization with Support Vector Machine,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 818–827, 2022, doi: 10.1016/j.procs.2023.01.062.

T. Cuong-Le, T. Nghia-Nguyen, S. Khatir, P. Trong-Nguyen, S. Mirjalili, and K. D. Nguyen, “An efficient approach for damage identification based on improved machine learning using PSO-SVM,” Eng. Comput., vol. 38, pp. 3069–3084, 2022, doi: 10.1007/s00366-021-01299-6.

S. Bumbungan, Kusrini, and Kusnawi, “Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Parameter Secara Otomatis pada Support Vector Machine (SVM) untuk Prediksi Kelulusan Mahasiswa Politeknik Amamapare Timika,” J. Tek. AMATA, vol. 4, no. 1, pp. 81–93, 2022, doi: 10.55334/jtam.v4i1.77.

I. Syarif, E. Zaluska, A. Prugel-Bennett, and G. Wills, “Application of bagging, boosting and stacking to intrusion detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7376 LNAI, pp. 593–602, 2012, doi: 10.1007/978-3-642-31537-4_46.

P. Dhakal, S. Khanal, and R. Bista, “Prediction of Anemia using Machine Learning Algorithms,” Int. J. Comput. Sci. Inf. Technol., vol. 15, no. 1, pp. 15–30, 2023, doi: 10.5121/ijcsit.2023.15102.

N. H. A. Malek, W. F. W. Yaacob, Y. B. Wah, S. A. Md Nasir, N. Shaadan, and S. W. Indratno, “Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 1, pp. 598–608, 2023, doi: 10.11591/ijeecs.v29.i1.pp598-608.

H. ŞEVGİN, “A comparative study of ensemble methods in the field of education: Bagging and Boosting algorithms,” Int. J. Assess. Tools Educ., vol. 10, no. 3, pp. 544–562, 2023, doi: 10.21449/ijate.1167705.

M. S. Alshiddy and B. N. Aljaber, “Employee Attrition Prediction using Nested Ensemble Learning Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 7, pp. 932–938, 2023, doi: 10.14569/IJACSA.2023.01407101.

F. Ridzuan and W. M. N. Wan Zainon, “A review on data cleansing methods for big data,” Procedia Comput. Sci., vol. 161, pp. 731–738, 2019, doi: 10.1016/j.procs.2019.11.177.

S. Mittal and S. Nag, “A survey of encoding techniques for reducing data-movement energy,” J. Syst. Archit., vol. 97, pp. 373–396, 2019, doi: 10.1016/j.sysarc.2018.11.001.

A. Muliawan, T. Badriyah, and I. Syarif, “Membangun Sistem Rekomendasi Hotel dengan Content Based Filtering Menggunakan K-Nearest Neighbor dan Haversine Formula,” Technomedia J., vol. 7, no. 2, pp. 231–247, 2022, doi: 10.33050/tmj.v7i2.1893.

A. Data, E. Eda, S. Peraih, and M. Olimpiade, “Exploratory Data Analysis ( EDA ): A Study of Olympic Medallist,” vol. 11, no. September, pp. 578–587, 2022, doi: https://doi.org/10.32520/stmsi.v11i3.1857.

E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan, “Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application,” Swarm Evol. Comput., vol. 63, no. March, p. 100868, 2021, doi: 10.1016/j.swevo.2021.100868.

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.

Published
2024-12-29
How to Cite
[1]
D. A. Fauziah, A. Muliawan, and M. Dimyati, “IMPLEMENTATION OF MACHINE LEARNING ON EMPLOYEE ATTRITION BASED ON PERFORMANCE PARAMETERS USING PARTICLE SWARM OPTIMIZATION AND ENSEMBLE CLASSIFER METHODS”, J. Tek. Inform. (JUTIF), vol. 5, no. 6, pp. 1823-1831, Dec. 2024.