DATA CLUSTERING ON TEACHING AND LEARNING EVALUATION APPLICATION OVER PANDEMIC ERA
Abstract
SIEPEL is an evaluation application for teaching and learning process in University of Bengkulu. It is mandatory for every student to fill the questionnaire before they can see the marking value for each subject each semester. This survey was designed to meet the requirements and expectations of students as educational service for customers. This data is very important to improve the quality of teaching and learning process for further policy and decision maker. However, the analysis of the data remains an open question as the size and the distribution of the data is become some issues to process the analysis. Here, we showed the new approach to analysis the data using K-Means Clustering to see the better distribution and understanding over the evaluation data. This paper used elbow method to find the best number of clusters to be implemented on the algorithm approach which results in four clusters of satisfaction values (unsatisfied, less satisfied, satisfied, and very satisfied). The result of this analysis was published based on website system to show the visualization of analysis. Furthermore, this research showed that the average value of evaluation result for 4 semester was very satisfied 6.50%; satisfied 43.89%; less satisfied 44.26%; and not satisfied 5.36%. The value of vary satisfied students was dropped from 20.47% to 0.12% by 2 years and the value for less satisfied was increased from 27.64% to 66.32%. This term was happened because of the pandemic era and the change on the process of learning and teaching on University of Bengkulu.
Downloads
References
L. Herawati dan D. Setialesmana, “Kepuasan Mahasiswa berdasarkan Kinerja Dosen dalam Proses Perkuliahan di FKIP Jurusan Matematika Universitas Siliwangi,” Jurnal Siliwangi, vol. 2, no. 2, pp. 131-136, 2016.
M. N. O. Sadiku, A. E. Shadare, S. M. Musa dan C. M. Akujuobi, “Data Visualization,” International Journal of Engineering Research And Advanced Technology(IJERAT), vol. 2, no. 12, pp. 11-16, 2016.
B. A. CandraP, “Prediksi Kepuasan Mahasiswa Terhadap Tingkat Pelayanan menggunakan Algoritma C4.5(Decision Tree),” Infotek : Jurnal Informatika dan Teknologi, vol. 1, no. 1, pp. 32 - 39, 2018.
M. Khusniati, M. A. Muslim dan A. Nurzahputra, “Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa,” Techno.COM, vol. 16, no. 1, pp. 17-24, 2017.
Ruslan, “Kepuasan Mahasiswa Terhadap Kinerja Dosen,” Jurnal Ilmu Pendidikan, vol. 17, no. 3, pp. 230-237, 2010.
T. Sulastri, “Analisis Kepuasan Mahasiswa Terhadap Kinerja Dosen,” Jurnal Ilmiah Ekonomi Manajemen dan Kewirausahaan, vol. 10, no. 2, pp. 167-184, 2016.
B. Paly, “Tingkat Kepuasan Mahasiswa Terhadap Kinerja Proses Belajar Mengajar (PBM) Dosen,” Jurnal Al Hikmah, vol. 15, no. 2, pp. 250-262, 2014.
Y. Ardy dan H. Budi, “Visualisasi Hasil Pemeriksaan Laboratorium Pasien Studi Kasus: Parahita Diagnostic Center,” JUISI, vol. 1, no. 2, pp. 142-150, 2015.
N. A. Syaripul dan A. M. Bachtiar, “Visualisasi Data Interaktif Data Terbuka Pemerintah Provinsi DKI Jakarta,” Jurnal Sistem Informasi (Journal of Information System), vol. 12, no. 2, pp. 82-89, 2016.
D. Aryanti dan J. Setiawan, “Visualisasi Data Penjualan dan Produksi PT Nitto Alam Indonesia Periode 2014-2018,” ULTIMA InfoSys, vol. 9, no. 2, pp. 86-91, 2018.
D. F. Saputra, “Visualisasi Data Di Sistem Manajemen Perpustakaan,” Jurnal Perpustakaan Pertanian, vol. 26, no. 2, pp. 82-86, 2017.
W. I. Loka dan F. Natalia, “Perancangan dan Pembuatan Visualisasi Data Dana Penelitian Internal dan Hibah Dikti LPPM Universitas Multimedia Nusantara,” ULTIMA InfoSys, vol. 10, no. 1, pp. 61-68, 2019.
F. Vitaly, Data Visualization and Graphics, USA: Monday Inspiration, 2008.
B. Fry, Visualizing data, USA: O’Reilly Media, 2008.
J. Thorp, Beautiful Visualization: Looking at Data through the Eyes of Experts, California: O’Reilly Media, 2010.
T. S. Madhulatha, “An Overview On Clustering Methods,” IOSR Journal of Engineering, vol. 2, no. 4, pp. 719-725, 2012.
T. M. Kodinariya dan P. R. Makwana, “Review on determining number of Cluster in K-Means Clustering,” International Journal of Advance Research in Computer Science and Management Studies, vol. 1, no. 6, pp. 90-95, 2013.
Syafnidawaty, “K-Means Clustering,” Universitas Raharja, 19 April 2020. [Online]. Available: https://raharja.ac.id/2020/04/19/k-means-clustering/. [Diakses 20 9 2021].
D. S. Saputri, G. M. Putra dan M. F. Larasati, “IMPLEMENTATION OF THE K-MEANS CLUSTERING ALGORITHM FOR THE COVID-19 VACCINATED VILLAGE IN THE UJUNG PADANG SUB-DISTRICT IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING UNTUK DESA TERVAKSINASI COVID-19 PADA KECAMATAN UJUNG PADANG,” JUTIF, vol. 3, no. 2, pp. 261-267, 2022.
E. Irwansyah, “Clustering,” Universitas Bina Nusantara, 9 Maret 2017. [Online]. Available: https://socs.binus.ac.id/2017/03/09/clustering/. [Diakses 1 12 2020].
T. Alfina, B. Santosa dan A. R. Barakbah, “Analisa Perbandingan Metode Hierarchical Clustering, K-Means Dan Gabungan Keduanya Dalam Membentuk Cluster Data,” Jurnal Teknik Pomits, vol. 1, no. 1, pp. 1-5, 2012.
Copyright (c) 2022 Arie Vatresia, Asahar Johar
This work is licensed under a Creative Commons Attribution 4.0 International License.