IMPLEMENTATION OF SURVIVAL ESTIMATION OF BONE MARROW TRANSPLANT PATIENTS WITH SEMIPARAMETRIC HAZARD FUNCTION USING MINITAB SOFTWARE

  • Hanung Prasetyo Program Studi Diploma Sistem Informasi, Fakultas Ilmu Terapan, Universitas Telkom, Indonesia
  • Ferra Arik Tridalestari Program Studi Bisnis Digital, Fakultas Bisnis, Universitas PGRI Yogyakarta, Indonesia
  • Wawa Wikusna Program Studi Diploma Sistem Informasi, Fakultas Ilmu Terapan, Universitas Telkom, Indonesia
Keywords: Data Analysis, Hazard Function, Semiparametric Estimation, Transplant Bone Marrow

Abstract

The Hazard Rate probability value estimation method is an estimation model that is carried out fully parametrically or it can also be done by non-parametric methods. Sometimes using the parametric method will give biased value results because it gives too much value in general, while the non-parametric estimation method causes the variance value to be too high. Therefore, for some cases there is a way to combine the two methods, which is called the Semiparametric method, which is an estimation method that has the characteristics of improving non-parametric parametric estimates. This paper shows that the semiparametric hazard method gives better results than parametric and non-parametric methods. The basis for developing the semiparametric probability method is to roughly estimate the probability of a parametric conjecture as a first step and then proceed with several correction models for setting data. The implementation of the probability value in this study uses the Life Time data of Transplant bone patients at Hospital X with the help of Minitab software analysis.

Downloads

Download data is not yet available.

References

R. Balon, “Medical-Education-Industrial Complex ?,” pp. 495–497, 2018.

N. Sulardi and A. Witanti, “Sistem Pakar Untuk Diagnosis Penyakit Anemia Menggunakan Teorema Bayes,” Jurnal Teknik Informatika (Jutif), vol. 1, no. 1, pp. 19–24, 2020.

P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival analysis: A survey,” ACM Computing Surveys, vol. 51, no. 6, 2019, doi: 10.1145/3214306.

P. C. Lambert and P. Royston, “Further development of flexible parametric models for survival analysis,” Stata Journal, vol. 9, no. 2, pp. 265–290, 2009, doi: 10.1177/1536867x0900900206.

and M. L. M. Klein, John P., “Refinements of the semiparametric proportional hazards model,” in Survival Analysis, Springer, 1997.

and T. G. Herriyanto, Nar, Pengantar Statistika Matematika. Bandung: Yrama Widya., 2009.

M. Rifa’i, “Aspek Biologi Sel T Regulator CD4+ CD25+ pada Transplantasi Sumsum Tulang,” The Journal of Experimental Life Sciences, vol. 4, no. 1, pp. 1–9, 2014, doi: 10.21776/ub.jels.2014.004.01.01.

J. J. G. Masihor, M. F. J. Mantik, M. Memah, and A. E. Mongan, “Hubungan Jumlah Trombosit Dan Jumlah Leukosit Pada Pasien Anak Demam Berdarah Dengue,” Jurnal e-Biomedik, vol. 1, no. 1, 2013, doi: 10.35790/ebm.1.1.2013.4152.

D. R. Cox, Analysis of Survival Data. New York: Chapman and Hall, 2018.

Gordon D. Murray, “No TitleA Note on the Estimation of Probability Density Functions,” JSTOR, 1977, doi: https://doi.org/10.2307/2335788.

J. Kiefer and J. Wolfowitz, “Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters,” The Annals of Mathematical Statistics, vol. 27, no. 4, pp. 887–906, 1956, doi: 10.1214/aoms/1177728066.

S. Karlin, A First Course in Stochastic Processes. Academic press., 2014.

G. Lin, Y. So, G. Johnston, and C. Nc, “Analyzing Survival Data with Competing Risks Using SAS ® Software,” SAS Global Forum, vol. 344, pp. 1–8, 2012.

M. T. L. R. Lyman Ott, An Introduction to Statistical Methods and Data Analysis. Nelson Education, 2015.

M. E. Lee J. Bain, Statisticals analysis of reliability and life-testing models. Boca Raton: Taylor & Francis, 2017.

W. Härdle, Smoothings techniques: with implementation in S. New York: Springer - Verlag, 2012.

Published
2022-10-24
How to Cite
[1]
H. Prasetyo, F. A. Tridalestari, and W. Wikusna, “IMPLEMENTATION OF SURVIVAL ESTIMATION OF BONE MARROW TRANSPLANT PATIENTS WITH SEMIPARAMETRIC HAZARD FUNCTION USING MINITAB SOFTWARE”, J. Tek. Inform. (JUTIF), vol. 3, no. 5, pp. 1177-1182, Oct. 2022.