COMPARISON OF K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION ALGORITHMS IN PATTERN RECOGNITION OF TAPIS FABRIC MOTIFS USING NON-GRAYSCALE LBP FEATURE EXTRACTION

  • Adelia Octaviani Informatics, Engineering and Computer Science Faculty, Universitas Teknokrat Indonesia, Indonesia
  • Muhammad Pajar Kharisma Putra Informatics, Engineering and Computer Science Faculty, Universitas Teknokrat Indonesia, Indonesia
Keywords: Classification, Digital Image Processing, KNN, LBP, SVM, Tapis Cloth

Abstract

Tapis fabric is a traditional garment of the Lampung people, made from cotton threads and adorned with silver or gold thread motifs. Tapis fabric is an important cultural heritage for the people of Lampung, Indonesia, with its motifs holding deep historical and symbolic meanings. The aim of this research is to develop a classification model for Tapis fabric patterns using K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) algorithms. This involves utilizing Local Binary Pattern (LBP) without converting the images to grayscale, thereby preserving the color in Tapis fabric motifs. The goal is to compare the performance of the two algorithms based on accuracy, precision, recall, and F1-score metrics. The application of digital image processing technology, particularly through the use of LBP feature extraction and appropriate classification algorithms, provides a significant contribution to facilitating the identification and classification of Tapis fabric. This research focuses on the development and identification of classification techniques to more accurately and efficiently distinguish the complex and varied Tapis fabric motifs. In this study, the KNN algorithm was applied with various k values, while the SVM algorithm was tested with different kernels, including RBF, linear, polynomial, and sigmoid. The results indicate that the KNN algorithm with k = 3 achieved the best results with an accuracy of 94%, while the SVM algorithm with the RBF kernel achieved the highest accuracy of 84%. These results show that KNN is more effective than SVM in the context of Tapis fabric motif classification for this study.

Downloads

Download data is not yet available.

References

G. C. Utomo and M. Yunita, “KAIN TENUN DI INDUSTRI MODE INDONESIA.” Folio, vol. 3, no. 1, 2022.

V. Manuel, “PERLINDUNGAN HUKUM MOTIF KAIN TENUN IKAT DAYAK KABUPATEN SINTANG MENURUT UNDANG - UNDANG NOMOR 28 TAHUN 2014 TENTANG HAK CIPTA” PERAHU (PENERANGAN HUKUM): JURNAL ILMU HUKUM, 2022.

A. Syarif et al., “IDENTIFIKASI KAIN TAPIS LAMPUNG MENGGUNAKAN EKSTRAKSI FITUR EDGE DETECTION (CANNY) DAN KLASIFIKASI PROBABILITY NEURAL NETWORK (PNN),” 2021.

A. Ramadhanu and H. Syahputra, “PENGENALAN TEKNOLOGI PENGOLAHAN CITRA DIGITAL (DIGITAL IMAGE PROCESSING) UNTUK SANTRI DI RAHMATAN LIL’ALAMIN INTERNATIONAL ISLAMIC BOARDING SCHOOL,” Communnity Dev. J., vol. 3, no. 2, pp. 1239–1244, 2022.

H. Denny, K. Samuel, K. Didi, and D. Anggun, “Klasifikasi Motif Citra Batik Yogyakarta Menggunakan Metode Adaptive Neuro Fuzzy Inference System,” J. Ilm. Setrum Artic. Press, vol. 8, no. 2, pp. 229–237, 2019.

Trisno, Karolus Wulla Rato, A. U. Janga, R. T. Ama, Robinson, and D. Reja, “Klasifikasi Kain Tenun Sumba menggunakan Jaringan Saraf Tiruan,” J. Pustaka Cendekia Inform., vol. Volume 1 N, p. pp 133-139, 2024.

M. A. Hasan and D. Y. Liliana, “Pengenalan Motif Songket Palembang Menggunakan Deteksi Tepi Canny, PCA dan KNN,” Multinetics, vol. 6, no. 1, pp. 1–7, 2020, doi: 10.32722/multinetics.v6i1.2700.

N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan Metode K-Nearest Neighbors,” J. SISFOKOM, vol. 08, 2019.

J. Homepage, S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “IJCIT (Indonesian Journal on Computer and Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, 2021.

Yahya and W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape ( Rokok El ektrik ) pada ‘ Lombok Vape On ’ Pendahuluan dihasilkan tidak stabil dan tidak mampu diprediksi Dari penelitian yang dilakukan , berusaha untuk mengklasifikasik,” J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020, [Online]. Available: https://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/2279/pdf_23

H. N. Irmanda and Ria Astriratma, “Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 915–922, 2020, doi: 10.29207/resti.v4i5.2313.

L. A. Hayurian and N. Hendrastuty, “COMPARISON OF NAÏVE BAYES ALGORITHM AND SUPPORT VECTOR MACHINE IN SENTIMENT ANALYSIS OF BOYCOTT ISRAELI PRODUCTS ON TWITTER,” vol. 5, no. 3, pp. 731–738, 2024, doi: 10.52436/1.jutif.2024.5.3.1813.

N. Prasetiyo, K. Ahmad Baihaqi, S. Arum, P. Lestari, and Y. Cahyana, “CLASSIFICATION OF RICE PLANTS AFFECTED BY RATS USING THE SUPPORT VECTOR MACHINE (SVM) ALGORITHM,” J. Tek. Inform., vol. 5, no. 2, pp. 637–643, 2024, doi: 10.52436/1.jutif.2024.5.2.1949.

Y. E. Yana and N. Nafi’iyah, “Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN,” Res. J. Comput. Inf. Syst. Technol. Manag., vol. 4, no. 1, p. 28, 2021, doi: 10.25273/research.v4i1.6687.

Y. M. Hutahaean and A. W. Wijayanto, “Klasifikasi Rumah Tangga Penerima Subsidi Listrik di Provinsi Gorontalo Tahun 2019 dengan Metode K-Nearest Neighbor dan Support Vector Machine,” J. Sist. dan Teknol. Inf., vol. 10, no. 1, p. 63, 2022, doi: 10.26418/justin.v10i1.51210.

M. Septiani and Z. Abidin, “PENGENALAN POLA BATIK LAMPUNG MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 552–558, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika

J. Elektronik et al., “Klasifikasi Motif Kain Tradisional Cepuk Menggunakan GLCM dan KNN” Jurnal Elektronik Ilmu Komputer Udayana, vol. 11, no. 3, 2023 .

R. Firdaus, Joni Satria, and B. Baidarus, “Klasifikasi Jenis Kelamin Berdasarkan Gambar Mata Menggunakan Algoritma Convolutional Neural Network (CNN),” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 267–273, Dec. 2022, doi: 10.37859/coscitech.v3i3.4360.

K. Ayuningsih, Y. A. Sari, and P. P. Adikara, “Klasifikasi Citra Makanan Menggunakan HSV Color Moment dan Local Binary Pattern dengan Naïve Bayes Classifier,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

D. Retnoningrum, A. W. Widodo, and M. A. Rahman, “Ekstraksi Ciri Pada Telapak Tangan Dengan Metode Local Binary Pattern (LBP),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2611–2618, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

A. S. Nugroho, R. Umar, and A. Fadlil, “Klasifikasi Botol Plastik Menggunakan Multiclass Support Vector Machine,” J. Khatulistiwa Inform., vol. 9, no. 2, pp. 79–85, 2021, doi: 10.31294/jki.v9i2.11058.

M. F. Naufal, “ANALISIS PERBANDINGAN ALGORITMA SVM, KNN, DAN CNN UNTUK KLASIFIKASI CITRA CUACA”, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) vol. 8, no. 2, 2021, hlm. 311-318 doi: 10.25126/jtiik.202184553.

Baiq Nurul Azmi, Arief Hermawan, and Donny Avianto, “Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 4, pp. 281–290, 2023, doi: 10.35746/jtim.v4i4.298.

W. Musu, A. Ibrahim, and Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5,” Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. X, no. 1, pp. 186–195, 2021.

P. Fremmuzar and A. Baita, “Uji Kernel SVM dalam Analisis Sentimen Terhadap Layanan Telkomsel di Media Sosial Twitter,” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 57–66, 2023, doi: 10.34010/komputika.v12i2.9460.

B. Zaman, A. Rifai, and M. B. Hanif, “Komparasi Metode Klasifikasi Batik Menggunakan Neural Network Dan K-Nearest Neighbor Berbasis Ekstraksi Fitur Tekstur,” J. Inf. Syst. Informatics, vol. 3, no. 4, pp. 582–595, 2021, doi: 10.51519/journalisi.v3i4.213.

Published
2024-09-20
How to Cite
[1]
A. Octaviani and M. P. Kharisma Putra, “COMPARISON OF K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION ALGORITHMS IN PATTERN RECOGNITION OF TAPIS FABRIC MOTIFS USING NON-GRAYSCALE LBP FEATURE EXTRACTION”, J. Tek. Inform. (JUTIF), vol. 5, no. 6, pp. 1621-1631, Sep. 2024.