PUBLIC SENTIMENT ANALYSIS OF 'DIRTY VOTE' DOCUMENTARY FILM ON TWITTER USING NAÏVE BAYES WITH GRID SEARCH OPTIMIZATION
Abstract
The film "Dirty Vote" provides a realistic depiction of alleged fraud issues within Indonesia's democratic system, released ahead of the 2024 elections. This has sparked various public opinions, both in favor of and against the film, potentially affecting the stability of Indonesia’s democratic system. The aim of this research is to analyze the public's reaction to the "Dirty Vote" documentary, which could serve as a consideration for assessing public awareness in rationally responding to a film and improving the quality of democracy in Indonesia. This research will test the accuracy of data used in classification using the Naive Bayes Classifier based on collected Twitter data. The evaluation results of the Naive Bayes model for sentiment classification showed an accuracy of 86%, with a precision of 84% and a recall of 91%. When compared to the implementation of hyperparameter tuning using grid search with a stratified k-fold combination and parameter configurations for alpha: [0,1], binarize: [0.0], and fit prior: [true, false], better results were obtained with an accuracy of 90%, a precision of 87%, and a recall of 94%. This demonstrates that using parameter optimization methods from grid search can help improve the accuracy of a classification model. It is hoped that this research will contribute significantly to the development of Indonesia’s democratic system, particularly in raising public awareness to think more rationally and critically when evaluating and analyzing a film.
Downloads
References
N. Purba, M. Yahya, and Nurbaiti, “Revolusi Industri 4.0 : Peran Teknologi Dalam Eksistensi Penguasaan Bisnis Dan Implementasinya,” J. Perilaku Dan Strateg. Bisnis, vol. 9, no. 2, pp. 91–98, 2021.
S. M. Prasetiyo, R. Gustiawan, Faarhat, and F. R. Albani, “Analisis Pertumbuhan Pengguna Internet Di Indonesia,” J. Bul. Ilm. Ilmu Komput. dan Multimed. , vol. 2, no. 1, pp. 65–71, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/biikma
R. Fajar, S. Program, P. Rekayasa, N. Lunak, and R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” vol. 3, no. 1.
Elsa Annisa Batu Bara, Kartika Amelia Nasution, Rafika Zahara Ginting, and Kartini Kartini, “Penelitian tentang Twitter,” J. Edukasi Non Form., vol. 3, no. 2, pp. 167–172, 22AD.
S. Fransiska, “ANALISIS SENTIMEN TWITTER UNTUK REVIEW FILM MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER (NBC) PADA SENTIMEN R PROGRAMMING,” J. Siliwangi, vol. 5, no. 2, 2019.
F. Aisopos, G. Papadakis, and T. Varvarigou, “Sentiment analysis of social media content using N-gram graphs,” MM’11 - Proc. 2011 ACM Multimed. Conf. Co-Located Work. - WSM’11 3rd ACM Soc. Media Work., no. December 2014, pp. 9–14, 2011, doi: 10.1145/2072609.2072614.
A. Nathaniella and I. Triadi, “Pengaruh Film Dokumenter ‘Dirty Vote’ pada Saat Masa Tenang Pemilihan Umum Tahun 2024 di Indonesia,” Indones. J. Law Justice, vol. 1, no. 4, p. 11, 2024, doi: 10.47134/ijlj.v1i4.2402.
F. Nurhuda, S. W. Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,” vol. 2, no. 2, 2013.
Aria Mustofa Hidayat and Mohammad Syafrullah, “Algoritma Naïve Bayes Dalam Analisis Sentimen Untuk Klasifikasi Pada Layanan Internet Pt.Xyz,” 2017. [Online]. Available: www.twitter.com
W. Apt, “Introduction,” Demogr. Res. Monogr., pp. 1–13, 2014, doi: 10.1007/978-94-007-6964-9_1.
A. N. Dinar, A. Susilo, Y. Irawan, and Y. Umaidah, “ANALISIS SENTIMEN PADA PENGGUNA TWITTER TERHADAP PROGRAM KAMPUS MERDEKA MENGGUNAKAN NAÏVE BAYES,” 2023.
R. Rakarahayu Putri and N. Cahyono, “Analisis Sentimen Komentar Masyarakat Terhadap Pelayanan Publik Pemerintah Dki Jakarta Dengan Algoritma Super Vector Machine Dan Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2363–2371, 2024, doi: 10.36040/jati.v8i2.9472.
E. M. Z. Darmawan and A. Fauzan Dianta, “Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM,” Teknol. J. Ilm. Sist. Inf., vol. 13, no. 1, pp. 8–15, 2023, [Online]. Available: https://doi.org/10.26594/teknologi.v13i1.3098Tersediaonlinediwww.journal.unipdu.ac.idHalamanjurnaldiwww.journal.unipdu.ac.id/index.php/teknologi
K. S. Chong and N. Shah, “Comparison of Naive Bayes and SVM Classification in Grid-Search Hyperparameter Tuned and Non-Hyperparameter Tuned Healthcare Stock Market Sentiment Analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 12, pp. 90–94, 2022, doi: 10.14569/IJACSA.2022.0131213.
A. Halim and Andri Safuwan, “Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naïve Bayes Berbasis Particle Swarm Optimization,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 170–178, 2023, doi: 10.51401/jinteks.v5i1.2229.
A. Halim Anshor and A. Safuwan, “ANALISIS SENTIMEN OPINI WARGANET TWITTER TERHADAP TES SCREENING GENOSE PENDETEKSI VIRUS COVID-19 MENGGUNAKAN METODE NAÏVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION,” 2023.
R. Apriani and D. Gustian, “ANALISIS SENTIMEN DENGAN NAÏVE BAYES TERHADAP KOMENTAR APLIKASI TOKOPEDIA,” J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019, doi: 10.52005/rekayasa.v6i1.86.
E. Y. Hidayat, R. W. Hardiansyah, and A. Affandy, “Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 2, pp. 108–118, Sep. 2021, doi: 10.25077/teknosi.v7i2.2021.108-118.
R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform., vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.
M. T. Razaq, D. Nurjanah, and H. Nurrahmi, “Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier dengan Fitur TF-IDF,” e-Proceeding Eng., vol. 10, no. 2, pp. 1698–1712, 2023, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19997
M. T. Razaq, D. Nurjannah, and H. Nurrahmi, “Analisis Sentimen Review Film Menggunakan Naive Bayes Classifier Dengan Fitur TF-IDF,” e-Proceeding Eng., vol. 10, no. 2, pp. 1698–1712, 2023.
A. Nisa, E. Darwiyanto, and I. Asror, “Analisis Sentimen Menggunakan Naive Bayes Classifier dengan Chi-Square FeatureSelection Terhadap Penyedia Layanan Telekomunikasi,” Univ. Telkom Bandung, vol. 6, no. 2, p. 8650, 2019.
S. Nada Apsariny, Sediono, N. Chamidah, E. Ana, and A. Kurniawan, “Sentiment Analysis of User Reviews Based on Naïve Bayes,” vol. 7, no. 1, 2022.
S. Widodo, H. Brawijaya, and S. Samudi, “Stratified K-fold cross validation optimization on machine learning for prediction,” Sinkron, vol. 7, no. 4, pp. 2407–2414, 2022, doi: 10.33395/sinkron.v7i4.11792.
R. Blanquero, E. Carrizosa, P. Ramírez-Cobo, and M. R. Sillero-Denamiel, “Constrained Naïve Bayes with application to unbalanced data classification,” Cent. Eur. J. Oper. Res., vol. 30, no. 4, pp. 1403–1425, 2022, doi: 10.1007/s10100-021-00782-1.
I. made B. Adnyana, “Penerapan Feature Selection untuk Prediksi Lama Studi Mahasiswa,” J. Sist. Dan Inform., vol. 13, pp. 72–76, 2019.
Copyright (c) 2024 Febrian Chrissma Bagaskara, Syahrullah Syahrullah, Andi Hendra, Chairunnisa Lamasitudju, Rinianty Rinianty

This work is licensed under a Creative Commons Attribution 4.0 International License.