Sentiment Analysis of Cyber Attacks in Bank Syariah Indonesia Using SVM and Indobert Method

Authors

  • Chandra Apriyadi Information System Teknokrat Indonesia, Indonesia
  • Styawati Computer Engineering, Universitas Teknokrat Indonesia, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.2.2636

Keywords:

BSI, IndoBERT, LDA, sentiment analysis, SVM

Abstract

Bank Syariah Indonesia (BSI) is one of the Islamic banking institutions that operates based on Islamic principles in accordance with Islamic law and has obtained an operational license from the Dewan Syariah Nasional (DSN). The advancement of information technology brings unique risks to the banking industry, including BSI. One example is the ransomware attack experienced by BSI from May 8 to 11, 2023, where 15 million customer data and 1.5 terabytes of internal data were stolen, leading to significant public concern and response across various media platforms. This has the potential to affect public trust in the Islamic banking industry, particularly BSI. This research aims to analyze public sentiment on Twitter regarding the attack to identify the majority sentiment formed, as well as to compare the performance of the SVM and IndoBERT models in classifying sentiments. Additionally, this study reveals the topics present in the negative sentiments based on the classifications of both models through topic modeling using Latent Dirichlet Allocation (LDA). The results indicate that the majority of sentiments are negative, while IndoBERT shows better performance compared to SVM, with an accuracy of 85% and an F1-Score of 82%. The topics present in the negative sentiments classified by SVM include issues related to fund security as well as transfers and withdrawals, whereas the topics present in the negative sentiments classified by IndoBERT are more related to problems with mobile banking and fund withdrawals.

Downloads

Download data is not yet available.

References

N. Tambunan et al., “Berita Utama tentang Error Service di Bank Syariah Indonesia (BSI),” Community Dev. J., vol. 4, no. 2, pp. 5096–5098, 2023, Accessed: Mar. 04, 2024. [Online]. Available: http://journal.universitaspahlawan.ac.id/index.php/cdj/article/view/16340

I. Zulfa, R. Septima, and P. Indriani, “Sistem Informasi Data Pinjaman Nasabah Berbasis Web di Bank Syariah Indonesia (BSI),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 3, no. 5, pp. 441–448, 2023,

Accessed: Mar. 04, 2024. [Online]. Available: http://www.djournals.com/klik/article/view/624

I. A. Dianta and E. Zusrony, “Analisis Pengaruh Sistem Keamanan Informasi Perbankan pada Nasabah Pengguna Internet Banking,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 3, no. 1, pp. 1–9, 2019, doi: 10.29407/intensif.v3i1.12125.

E. Febriansyah, A. T. Yulinda, and N. Yuniarti, “Analisis Faktor-Faktor yang Mempengaruhi Penyaluran Kredit (Studi pada Bank Umum Konvensional yang Terdaftar di Bursa Efek Indonesia Tahun 2014- 2018),” EKOMBIS Rev. J. Ilm. Ekon. dan Bisnis, vol. 10, no. 1, pp. 249–262, 2022, doi: 10.37676/ekombis.v10i1.1634.

H. Agustin, “Teori Bank Syariah,” JPS (Jurnal Perbank. Syariah), vol. 2, no. 1, pp. 67–83, 2021, doi: 10.46367/jps.v2i1.279.

V. Marcelliana et al., “Penerapan Perlindungan Konsumen terhadap Nasabah PT Bank Syariah Indonesia dalam Kasus Kebocoran Data Nasabah,” Depos. J. Publ. Ilmu Huk., vol. 1, no. 2, pp. 180–194, 2023, doi: 10.59581/deposisi.v1i2.562.

R. M. Muna, E. W. H. Budianto, and N. D. T. Dewi, “Bank Syariah Indonesia (BSI): Studi Pustaka (Library Research) dan Bibliometrik VOSviewer,” Universitas Islam Negeri Maulana Malik Ibrahim Malang. pp. 1–16, 2023. doi: 10.5281/zenodo.10078436.

E. Shiliha, “Pengaruh Pandangan Islam, Pelayanan dan Keamanan terhadap Minat Nasabah untuk Menabung di Bank Syariah Islam (BSI) Cabang Lahat,” MOTIVASI, vol. 7, no. 1, pp. 15–24, 2022, doi: 10.32502/mti.v7i1.4497.

K. K. Utari, Y. Septiyana, Asnaini, and K. Elwardah, “Efisiensi Keputusan Merger Tiga Bank Syariah di Indonesia pada Masa Pandemi Covid-19 (Studi di BSI Kc Bengkulu Panorama),” EKOMBIS Rev. J. Ilm. Ekon. dan Bisnis, vol. 10, no. DNU 14 TH, pp. 311–324, 2022, doi: 10.37676/ekombis.v10is1.1922.

F. A. Burhan, “Deretan Top 10 Bank Terbesar Indonesia, Nomor Satu Asetnya Tembus Rp2.000 Triliun,” Bisnis.com. Accessed: Mar. 05, 2024. [Online]. Available: https://finansial.bisnis.com/read/20231128/90/1718828/deretan-top-10-bank-terbesar-indonesia-nomor- satu-asetnya-tembus-rp2000-triliun

F. A. Burhan, “Dominasi BSI di Industri Bank Syariah Indonesia Terlalu Kuat, Ini Buktinya,” Bisnis.com. Accessed: Mar. 05, 2024. [Online]. Available: https://finansial.bisnis.com/read/20231115/231/1714636/dominasi-bsi-di-industri-bank-syariah- indonesia-terlalu-kuat-ini-buktinya

OJK, Cetak Biru Transformasi Digital Perbankan, vol. 13, no. April. 2020. Accessed: Mar. 06, 2024. [Online]. Available: https://www.ojk.go.id/id/berita-dan-kegiatan/info-terkini/Pages/Cetak-Biru-

Transformasi-Digital-Perbankan.aspx

KumparanTECH, “Geng Ransomware LockBit Klaim Serang BSI, Siapa Mereka?,” kumparan.com. Accessed: Mar. 07, 2024. [Online]. Available: https://kumparan.com/kumparantech/geng-ransomware- lockbit-klaim-serang-bsi-siapa-mereka-20OXLCKhlgC

KumparanTECH, “Viral Data BSI Dibobol Geng Ransomware LockBit, Komut Pastikan Aman,”kumparan.com. Accessed: Mar. 07, 2023. [Online]. Available: https://kumparan.com/kumparanbisnis/viral-data-bsi-dibobol-geng-ransomware-lockbit-komut-pastikan- aman-20OUOEPVO16/2

Y. N. Prasetya, D. Winarso, and Syahril, “Analisis Sentimen Masyarakat pada Twiter terhadap Isu Covid-

Menggunakan Metode Lexicon Based,” J. FASILKOM, vol. 11, no. 2, pp. 97–103, 2021, doi: 10.37859/jf.v11i2.2772.

S. J. Pipin and H. Kurniawan, “Analisis Sentimen Kebijakan MBKM Berdasarkan Opini Masyarakat di Twitter Menggunakan LSTM,” J. SIFO Mikroskil, vol. 23, no. 2, pp. 197–208, 2022, doi: 10.55601/jsm.v23i2.900.

E. R. Lidinillah, T. Rohana, and A. R. Juwita, “Analisis Sentimen Twitter terhadap Steam Menggunakan Algoritma Logistic Regression dan Support Vector Machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 154–164, 2023, doi: 10.37373/tekno.v10i2.440.

D. Mualfah, A. Prihatin, R. Firdaus, and Sunanto, “Analisis Sentimen Masyarakat terhadap Kasus Pembobolan Data Nasabah Bank BSI pada Twitter Menggunakan Metode Random Forest dan Naïve Bayes,” J. FASILKOM, vol. 13, no. 3, pp. 614–620, 2023, Accessed: Mar. 06, 2024. [Online]. Available: https://ejurnal.umri.ac.id/index.php/JIK/article/view/6478

A. Nurkholis, Styawati, and A. Suhartanto, “Firefly Algorithm for SVM Multi-class Optimization on Soybean Land Suitability Analysis,” Int. J. Informatics Vis., vol. 8, no. 2, pp. 592–597, 2024, doi: 10.62527/joiv.8.2.1860.

E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding dan Algoritma Support Vector Machine (SVM),” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023, doi: 10.33365/jtsi.v4i1.2445.

D. Ridhwanulah and D. H. Fudholi, “Pemodelan Topik pada Cuitan tentang Penyakit Tropis di Indonesia dengan Metode Latent Dirichlet Allocation,” J. Ilm. SINUS, vol. 20, no. 1, pp. 11–22, 2022, doi: 10.30646/sinus.v20i1.589.

H. Oktafiandi, “Implementasi LDA untuk Pengelompokan Topik Twitter Bertagar #Mypertamina,” J. Ekon. dan Tek. Inform., vol. 11, no. 1, pp. 10–16, 2023, Accessed: Oct. 14, 2024. [Online]. Available: http://e-journal.polsa.ac.id/index.php/jneti/article/view/222

S. Mutmainah, D. H. Fudholi, and S. Hidayat, “Analisis Sentimen dan Pemodelan Topik Aplikasi Telemedicine pada Google Play Menggunakan BiLSTM dan LDA,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 312–323, 2023, doi: 10.30865/mib.v7i1.5486.

Styawati, A. Nurkholis, A. A. Aldino, S. Samsugi, E. Suryati, and R. P. Cahyono, “Sentiment Analysis on Online Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM) Algorithm,” in 2021 International Seminar on Machine Learning, Optimization, and Data Science, ISMODE 2021, 2022, pp. 163–167. doi: 10.1109/ISMODE53584.2022.9742906.

T. W. Putra, A. S. Sofyan, S. Sofyan, E. Rusanti, and Wahyudi, “Analisis Sentimen Twitter pada Bank Syariah Indonesia (Studi Kasus: Sistem BSI Down),” El Mudhorib J. Kaji. Ekon. dan Perbank. Syariah, vol. 4, no. 2, pp. 128–138, 2023, Accessed: Mar. 08, 2024. [Online]. Available: http://e- journal.iainfmpapua.ac.id/index.php/elmudhorib/article/view/899

R. A. Husen, R. Astuti, L. Marlia, R. Rahmaddeni, and L. Efrizoni, “Analisis Sentimen Opini Publik pada Twitter terhadap Bank BSI Menggunakan Algoritma Machine Learning,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 211–218, 2023, doi: 10.57152/malcom.v3i2.901.

A. M. Pravina, I. Cholisoddin, and P. P. Adikara, “Analisis Sentimen tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” J. Pengemb. Teknlogi Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2789–2797, 2019, Accessed: May 20, 2024. [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4793

N. A. Salsabila, Y. A. Winatmoko, A. A. Septiandri, and A. Jamal, “Colloquial Indonesian Lexicon,” in Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, Institute of Electrical and Electronics Engineers Inc., Jul. 2018, pp. 226–229. doi: 10.1109/IALP.2018.8629151.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma SVM untuk Analisis Sentimen pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” J. Ilm. Edutic Pendidik. dan Inform., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

A. Maulana, I. K. Afifah, A. Mubarrak, K. R. Fauzan, A. Dwintara, and B. P. Zen, “Comparison of Logistic Regression, Multinomialnb, SVM, and K-NN Methods on Sentiment Analysis of Gojek App Reviews on the Google Play Store,” J. Tek. Inform., vol. 4, no. 6, pp. 1487–1494, 2023, doi: 10.52436/1.jutif.2023.4.6.863.

A. Ikegami and I. D. M. B. A. Darmawan, “Analisis Sentimen dan Pemodelan Topik Ulasan Aplikasi Noice Menggunakan XGBoost dan LDA,” Jnatia, vol. 1, no. 1, pp. 325–336, 2022, Accessed: May 21, 2024. [Online]. Available: https://ojs.unud.ac.id/index.php/jnatia/article/download/92679/47046

M. F. Arfat, Styawati, A. Nurkholis, and I. Kurniawan, “Analisis Sentimen Masyarakat Indonesia Terkait Vaksin Covid-19 pada Media Sosial Twitter Menggunakan Metode Support Vector Machine (SVM),” J. Inform. J. Pengemb. IT, vol. 7, no. 2, pp. 96–103, 2022, doi: 10.30591/jpit.v7i2.3549.

N. S. Syam et al., “Model Support Vector Machine untuk Prediksi pada Penggunaan Energi Listrik di Rumah Hemat Energi,” J. Inform., vol. 1, no. 2, pp. 56–59, 2022, doi: 10.57094/ji.v1i2.360.

A. Nursalim and R. Novita, “Sentiment Analysis of Comments on Google Play Store, Twitter and YouTube to the Mypertamina Application with Support Vector Machine,” J. Tek. Inform., vol. 4, no. 6,

pp. 1305–1312, 2023, doi: 10.52436/1.jutif.2023.4.6.1059.

Styawati and K. Mustofa, “A Support Vector Machine-Firefly Algorithm for Movie Opinion Data Classification,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, pp. 219–230, 2019, doi: 10.22146/ijccs.41302.

Styawati, A. Nurkholis, S. Alim, and N. Safitri, “Study the SVM Kernel for Classification of Covid-19 Vaccine Data on Twitter,” J. Tekno Kompak, vol. 17, no. 1, pp. 160–170, 2023, doi: 10.33365/jtk.v17i1.2254.

B. Wilie et al., “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2020, pp. 843–857. Accessed: Jul. 31, 2024. [Online]. Available: https://aclanthology.org/2020.aacl- main.85

N. L. P. M. Putu, A. Z. Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 123–131, 2021, doi: 10.29207/resti.v5i1.2587.

E. A. Putra, “Sentiment Analysis Using Bidirectional Encoder Representations from Transformers (BERT),” medium.com. Accessed: Mar. 12, 2024. [Online]. Available: https://medium.com/@eza.a.putra/implementasi-bert-untuk-analisis-sentimen-terhadap-ulasan-aplikasi- flip-berbahasa-indonesia-557d691e0440

Additional Files

Published

2025-04-26

How to Cite

[1]
C. . Apriyadi and S. Styawati, “Sentiment Analysis of Cyber Attacks in Bank Syariah Indonesia Using SVM and Indobert Method”, J. Tek. Inform. (JUTIF), vol. 6, no. 2, pp. 819–838, Apr. 2025.