COMPARISON OF RANDOM FOREST, K-NEAREST NEIGHBOR, DECISION TREE, AND XGBOOST ALGORITHMS FOR DETECTING STUNTING IN TODDLERS

  • Zaynuri Ilham Bimawan Informatics, Faculty of Computer Science, Universitas Amikom Purwokerto, Indonesia
  • Tri Astuti Informatics, Faculty of Computer Science, Universitas Amikom Purwokerto, Indonesia
  • Primandani Arsi Informatics, Faculty of Computer Science, Universitas Amikom Purwokerto, Indonesia
Keywords: Desision Tree, KNN, Random Forest, Stunting Detection, XGBoost

Abstract

Stunting is a significant health issue in many developing countries, including Indonesia. Advances in health technology have opened new opportunities to improve the accuracy and efficiency of detecting stunting in young children, with one such advancement being Machine Learning technology. This study compares various Machine Learning algorithms for detecting stunting in children. The methodology includes data collection, data exploration, data preprocessing, feature extraction, model classification, and model evaluation. The results show that Random Forest demonstrates superior performance with the highest accuracy of 0.999132, recall of 0.999132, and a macro-averaged F1-score of 0.998906, making it the most consistent model for predicting child nutritional status. K-Nearest Neighbor also shows very good performance with an accuracy of 0.999050 and an F1-score of 0.998748. Decision Tree has an accuracy of 0.999091 and an F1-score of 0.998705, closely matching the performance of Random Forest and KNN. XGBoost, with an accuracy of 0.991033 and an F1-score of 0.987495, performs lower than the other three models. Therefore, Random Forest is the recommended choice for implementing stunting prediction in children.

Downloads

Download data is not yet available.

References

M. R. Akbar Ariyadi, S. Lestanti, and S. Kirom, “KLASIFIKASI BALITA STUNTING MENGGUNAKAN RANDOM FOREST CLASSIFIER DI KABUPATEN BLITAR,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3846–3851, Jan. 2024, doi: 10.36040/jati.v7i6.7822.

G. N. Masacgi and M. S. Rohman, “Optimasi Model Algoritma Klasifikasi menggunakan Metode Bagging pada Stunting Balita,” Edumatic J. Pendidik. Inform., vol. 7, no. 2, pp. 455–464, Dec. 2023, doi: 10.29408/edumatic.v7i2.23812.

A. A. R. Reza and Muhammad Syaifur Rohman, “Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization,” J. INFORMATICS Telecommun. Eng., vol. 7, no. 2, pp. 534–544, Jan. 2024, doi: 10.31289/jite.v7i2.10628.

B. Satria, T. Azhima, Y. Siswa, and W. J. Pranoto, “Optimasi Random Forest dengan Genetic Algorithm dan Recursive Feature Elimination pada High Dimensional Data Stunting Samarinda,” vol. 8, pp. 1778–1789, 2024, doi: 10.30865/mib.v8i3.7883.

R. N. Ramadhon, A. Ogi, A. P. Agung, R. Putra, S. S. Febrihartina, and U. Firdaus, “Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank,” Karimah Tauhid, vol. 3, no. 2, pp. 1860–1874, Feb. 2024, doi: 10.30997/karimahtauhid.v3i2.11952.

N. Windy Mardiyyah, N. Rahaningsih, and I. Ali, “PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR PADA PREDIKSI PEMBERIAN KREDIT DI SEKTOR FINANSIAL,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1491–1499, Apr. 2024, doi: 10.36040/jati.v8i2.9010.

R. G. Wardhana, G. Wang, and F. Sibuea, “PENERAPAN MACHINE LEARNING DALAM PREDIKSI TINGKAT KASUS PENYAKIT DI INDONESIA,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, Jul. 2023, doi: 10.24076/joism.2023v5i1.1136.

M. E. Setiyawati, L. P. Ardhiyanti, E. N. Hamid, N. A. T. Muliarta, and Y. J. Raihanah, “Studi Literatur: Keadaan Dan Penanganan Stunting Di Indonesia,” IKRA-ITH Hum. J. Sos. dan Hum., vol. 8, no. 2, pp. 179–186, Jul. 2024, doi: 10.37817/ikraith-humaniora.v8i2.3113.

I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 257–265, Jan. 2024, doi: 10.57152/malcom.v4i1.1078.

S. Lonang, A. Yudhana, and M. K. Biddinika, “Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, p. 2109, Oct. 2023, doi: 10.30865/mib.v7i4.6553.

D. D. S. Fatimah, Y. Septiana, and G. Ramadhan, “Rancang Bangun Aplikasi Sistem Pakar Diagnosa Penyakit Stunting Berbasis Web Menggunakan Metode Certainty Factor,” J. Algoritm., vol. 19, no. 2, pp. 547–557, Nov. 2022, doi: 10.33364/algoritma/v.19-2.1144.

S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” J. Math. Theory Appl., vol. 4, no. 1, pp. 21–26, Aug. 2022, doi: 10.31605/jomta.v4i1.1792.

N. A. Pramudhyta and M. S. Rohman, “Perbandingan Optimasi Metode Grid Search dan Random Search dalam Algoritma XGBoost untuk Klasifikasi Stunting,” J. MEDIA Inform. BUDIDARMA, vol. 8, no. 1, p. 19, Jan. 2024, doi: 10.30865/mib.v8i1.6965.

K. H. Hanif and N. R. Muntiari, “Penerapan Algoritma Decision Tree, Svm, Naïve Bayes Dalam Deteksi Stunting Pada Balita,” METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 8, no. 1, pp. 105–109, 2024, doi: 10.46880/jmika.

A. Husaini, I. Hoeronis, H. H. Lumana, and L. D. Puspareni, “Early Detection of Stunting in Toddlers Based on Ensemble Machine Learning in Purbaratu Tasikmalaya,” J. Sist. dan Teknol. Inf., vol. 11, no. 3, p. 487, Jul. 2023, doi: 10.26418/justin.v11i3.66465.

D. Gunawan and V. N. Andika, “Implementasi Teorema Bayes Pada Sistem Informasi Posyandu Dalam Mendeteksi Stunting Pada Balita,” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 692, Jun. 2023, doi: 10.30865/json.v4i4.6146.

I. C. R. Drajana and A. Bode, “Prediksi Status Penderita Stunting Pada Balita Provinsi Gorontalo Menggunakan K-Nearest Neighbor Berbasis Seleksi Fitur Chi Square,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 2, pp. 309–316, Apr. 2022, doi: 10.32672/jnkti.v5i2.4205.

U. R. Gurning, S. F. Octavia, D. R. Andriyani, N. Nurainun, and I. Permana, “Prediksi Risiko Stunting pada Keluarga Menggunakan Naïve Bayes Classifier dan Chi-Square,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 172–180, Jan. 2024, doi: 10.57152/malcom.v4i1.1074.

R. Maulana, Z. Panjaitan, and A. Alhafiz, “Penerapan Metode Naive Bayes Untuk Mendiagnosa Penyakit Stunting Pada Balita,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 4, p. 425, Jul. 2022, doi: 10.53513/jursi.v1i4.5446.

M. Ula, A. F. Ulva, M. Mauliza, M. A. Ali, and Y. R. Said, “Application of Machine Learning in Determining the Classification of Children’S Nutrition With Decision Tree,” J. Tek. Inform., vol. 3, no. 5, pp. 1457–1465, 2022, doi: 10.20884/1.jutif.2022.3.5.599.

Published
2024-09-19
How to Cite
[1]
Z. I. Bimawan, T. Astuti, and P. Arsi, “COMPARISON OF RANDOM FOREST, K-NEAREST NEIGHBOR, DECISION TREE, AND XGBOOST ALGORITHMS FOR DETECTING STUNTING IN TODDLERS”, J. Tek. Inform. (JUTIF), vol. 5, no. 6, pp. 1599-1607, Sep. 2024.