IMPLEMENTATION OF THE K-NEAREST NEIGHBORS METHOD FOR DETERMINING FETAL HEALTH STATUS
Abstract
Determining the health status of the fetus is a crucial aspect of pregnancy monitoring to reduce the risk of complications and increase the safety of the mother and baby. The K-Nearest Neighbors (KNN) method has been implemented as a classification technique in determining fetal health status based on cardiotocography (CTG) data. This study describes the use of the KNN algorithm to analyze various CTG parameters, including fetal heart rate and uterine contraction frequency, to classify fetal health status into three categories: normal, suspect, and pathologic. The implementation process involves collecting normalized data, selecting relevant features, and using the KNN algorithm with varying K values to determine the most optimal value. The research results show that the KNN method with the right K value can achieve high accuracy in classifying fetal health status, with accuracy reaching up to 89%. These findings indicate that KNN is an effective and reliable method in supporting medical personnel to make decisions based on CTG, which can ultimately improve the quality of maternal and infant health care. In addition, the implementation of this method is relatively simple and can be integrated into existing health systems without requiring large computing resources. Further research is recommended to compare the performance of KNN with other machine learning methods such as Support Vector Machine(SVM) and Random Forest to identify the best method in this context. The use of larger and more diverse data is also expected to increase the accuracy and generalization of the model in various clinical conditions.
Downloads
References
M. S. Haris et al., PENGANTAR DATA SCIENCE, Pertama. makassar: Penerbit Widina, 2023.
I. Sahputra, M. Mauliza, and S. F. A. Zohra, “The Implementasi Algoritma C5.0 Pada Klasifikasi Status Gizi Ibu Hamil di Kota Lhokseumawe,” Metik J., vol. 7, no. 1, pp. 42–46, 2023, doi: 10.47002/metik.v7i1.562.
T. J. Briliani, “Pemanfaatan Data Mining dengan Algoritma K-Means Clustering dan C4. 5 Decision Tree Classification untuk Analisis Kesehatan Maternal di Puskesmas …,” pp. 4–5, 2023, [Online]. Available: https://etd.repository.ugm.ac.id/penelitian/detail/230810.
T. Susanti, E. K. Suryaningsih, A. Kebidanan, and W. Buana, “PENGARUH PRENATAL YOGA TERHADAP KESEHATAN IBU DAN JANIN : SCOPING REVIEW The Effect Of Prenatal Yoga In Maternal And Fetal Wellness : Scoping Review,” Avicenna J. Heal. Res., vol. 6, no. 2, p. 112, Oct. 2023.
I. Sulihati, A. Syukur, and A. Marjuni, “Deteksi Kesehatan Janin Menggunakan Decision Tree dan Feature Forward Selection,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1658–1664, Dec. 2022, doi: 10.47065/bits.v4i3.2672.
Y. Salini, S. N. Mohanty, J. V. N. Ramesh, M. Yang, and M. M. V. Chalapathi, “Cardiotocography Data Analysis for Fetal Health Classification Using Machine Learning Models,” IEEE Access, vol. 12, no. February, pp. 26005–26022, Feb. 2024, doi: 10.1109/ACCESS.2024.3364755.
Y. Dianti, 済無No Title No Title No Title. 2017.
R. R. Dixit, “Predicting Fetal Health using Cardiotocograms: A Machine Learning Approach,” Jan. 2022.
F. Karepesina and L. Zahrotun, “Penerapan Data Mining Untuk Penentuan Penerima Beasiswa Dengan Metode K-Nearest Neighbor (K-NN),” Techno (Jurnal Fak. Tek. Univ. Muhammadiyah Purwokerto), vol. 24, no. 1, p. 1, 2023, doi: 10.30595/techno.v24i1.9084.
L. Suryadi, N. Ngajiyanto, N. E. Pratiwi, F. Ardhy, and P. Riswanto, “Penerapan Data Mining Prediksi Penjualan Mebel Terlaris Menggunakan Metode K-Nearest Neighbor(K-Nn) (Studi Kasus : Toko Zerita Meubel),” JUSIM (Jurnal Sist. Inf. Musirawas), vol. 7, no. 2, pp. 174–184, 2022, doi: 10.32767/jusim.v7i2.1697.
Aprilla Dennis, Belajar Data Mining dengan RapidMiner, vol. 5, no. 4. 2013.
S. Aldana and J. Sasongko Wibowo, “Penerapan Data Mining Terhadap Klasifikasi Pasien Penderita Penyakit Liver Menggunakan Metode K-Nearest Neighbor,” J. Ilm. Komput., vol. 20, no. 1, pp. 124–132, Feb. 2024.
C. Sundar, M. Chitradevi, and G. Geetharamani, “Incapable of identifying suspicious records in CTG data using ANN based machine learning techniques,” J. Sci. Ind. Res. (India)., vol. 73, no. 8, pp. 510–516, Aug. 2014.
C. H. P. Panjaitan, L. J. Pangaribuan, and C. I. Cahyadi, “Analisis Metode K-Nearest Neighbor Menggunakan Rapid Miner untuk Sistem Rekomendasi Tempat Wisata Labuan Bajo,” Remik, vol. 6, no. 3, pp. 534–541, 2022, doi: 10.33395/remik.v6i3.11701.
D. W. Farkhina Dwi Utari, Amril Mutoi Siregar, “Implementasi Algoritme K-Nearest Neighboar ( KNN ) untuk Prediksi Hasil Produksi,” Sci. Student J. Information, Technol. Sci., vol. 1, no. 1, pp. 21–25, 2020.
J. Homepage, S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “IJCIT (Indonesian Journal on Computer and Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, Jul. 2021.
and K. Nuari, Reflan, Apriliyani, Aflahah, Juwari, “Metode k-nearest neighbor,” J. Inf. Politek. Indonusa Surakarta, vol. 4, no. 2, pp. 28–34, 2018.
L. Rofiasari, R. Noprianty, I. Yusita, Y. Mulyani, and A. Suryanah, “Assistance for Pregnant Women Class in Providing Antenatal Care Motivation as an Effort to Improve Maternal and Fetal Health in the Pandemic Covid-19,” J. Peduli Masy., vol. 2, no. 4, pp. 197–204, 2020, doi: 10.37287/jpm.v2i4.251.
S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 49, 2022, doi: 10.30865/mib.v6i1.3312.
Copyright (c) 2024 Maulidatul Mawaddah Maulida
This work is licensed under a Creative Commons Attribution 4.0 International License.