IMPLEMENTATION OF THE K-MEANS CLUSTERING ALGORITHM IN ANALYZING PUBLIC SATISFACTION REGARDING PUBLIC SERVICES (STUDI CASE: BALAI PENGUJIAN STANDAR INSTRUMEN TANAMAN INDUSTRI DAN PENYEGAR)

  • Atika Juhaedah Alifah Information System, Faculty of Computer Engineering and Design, Universitas Nusa Putra, Indonesia
  • Sudin Saepudin Information System, Faculty of Computer Engineering and Design, Universitas Nusa Putra, Indonesia
  • Carti Irawan Information System, Faculty of Computer Engineering and Design, Universitas Nusa Putra, Indonesia
Keywords: K-Means Clustering, Microsoft Excel, Publik Service, Python

Abstract

With the development of today's modern era, publik service is an important and very necessary thing because it is one of the benchmarks for seeing publik trust and satisfaction with the services provided by an agency. One of the agencies that carries out publi services is the Balai Pengujian Standar Instrumen Tanaman Industri dan Penyegar (BPSI TRI), a government agency under the Ministry of Agriculture. There are a lot of people who will receive services in 2023. Therefore, publik service officers find it difficult to determine publik satisfaction in order to optimize the services provided. To determine community satisfaction, data mining calculations were carried out using the K-Means clustering algorithm method with Community Satisfaction Index (IKM) data in 2023 using 3 (three) categories including unsatisfactory (C1), satisfactory (C2) and very satisfactory) and 2 attributes, namely the behavior of service officers (U7) as well as handling complaints, suggestions and input (U8) then carried out calculations using Microsoft Excel and got the results that C1 (unsatisfactory) 14 respondents, C2 (satisfactory) 39 respondents and C3 (very satisfactory) 98 respondents. Meanwhile, from the results of calculations using python testing, the results showed that C1 (unsatisfactory) was 9 respondents, C2 (satisfactory) was 39 respondents and C3 (very satisfactory) was 103 respondents.

Downloads

Download data is not yet available.

References

Data Tempo and Faisal Javier, “Tingkat Kepercayaan masyarakat terhadap Institusi,” https://data.tempo.co/data/1630/tingkat-kepercayaan-masyarakat-terhadap-institusi-bisnis-dan-pemerintah-siapa-yang-lebih-tinggi.

Kata Data and Cindy Mutia Annur, “Ragam Masalah Utama pada Pelayanan Publik,” https://databoks.katadata.co.id/datapublish/2021/12/20/persyaratan-berbelit-keluhan-utama-masyarakat-terhadap-pelayanan-publik.

Balai Pengujian Standar Instrumen Tanaman Industri, “Indeks Kepuasan masyarakat,” https://tanamanindustri.bsip.pertanian.go.id/informasi-publik/indeks-kepuasan-masyarakat.

U. Burelia, G. Urva, A. Sellyana, S. Tinggi Teknologi Dumai, and D. Sekolah Tinggi Teknologi Dumai, “MENGUKUR TINGKAT KEPUASAN MASYARAKAT PADA PELAYANAN KEPOLISIAN RESOR(POLRES) DUMAI MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING,” 2022, doi: 10.52072/jutekinf.v10i1.354

W. A. Wahyuni and S. Saepudin, “PENERAPAN DATA MINING CLUSTERING UNTUK MENGELOMPOKKAN BERBAGAI JENIS MERK MESIN CUCI,” 2021.

F. Sembiring, O. Octaviana, and S. Saepudin, “IMPLEMENTASI METODE K-MEANS DALAM PENGKLASTERAN DAERAH PUNGUTAN LIAR DI KABUPATEN SUKABUMI (STUDI KASUS : DINAS KEPENDUDUKAN DAN PENCATATAN SIPIL),” Jurnal Tekno Insentif, vol. 14, no. 1, pp. 40–47, Apr. 2020, doi: 10.36787/jti.v14i1.165.

A. K. Vadreas, G. N. Yuhandika, H. Fryonanda, M. I. Lubis, U. I. Arsyah, and D. W. S. Nirad, “Analysis of Stunting Spread in Mentawai Islands Regency Using K-Means Clustering Method,” 2024, pp. 1015–1031. doi: 10.2991/978-94-6463-364-1_93.

D. H. H. S. H. W. A. A. Muchtar, “Peran Media Komunikasi Pemerintahan dan Perilaku Birokrasi Dalam Pelayanan Publik (Studi Pada Kecamatan Tarogong Kaler garut),” JURNAL KOMUNIKASI & ADMINISTRASI PUBLIK, vol. 10, no. Jurnal Professional, pp. 179–188, Jun. 2023, doi: 10.37676/professional.v10i1.3932

A. Kepuasan masyarakat Terhadap Pelayanan Publik Berdasarkan Indeks Kepuasan masyarakat di Kantor Kecamatan Ayah Kabupaten Kebumen Indah Nur, aini Sulistyo, S. Partiwi Ediwidjojo, and D. oleh Politeknik Dharma Patria Kebumen, “Jurnal E-Bis (Ekonomi-Bisnis),” vol. 4, no. 2, pp. 276–286, 2020, doi: 10.37339/jurnal.

A. Budiono, H. Manurung, and S. Syahputra, “Penilaian Kinerja Pegawai Desa Menggunakan Algoritms K-Means Berdasarkan Index Kepuasan masyarakat (Kantor Desa Padang Brahrang),” Agustus, vol. 6, no. 3, 2022.

Haris Kurniawan, Sarjon Defit, and Sumijan, “Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal,” Journal of Applied Computer Science and Technology, vol. 1, no. 2, pp. 80–89, Dec. 2020, doi: 10.52158/jacost.v1i2.102.

R. M. Sagala, “Prediksi Kelulusan Mahasiswa Menggunakan Data mining Algoritma K-means.” doi: 10.36342/teika.v11i2.2610.

S. Oop Sofiyah and R. Danar Dana, “ANALISIS EFEKTIVITAS PELAYANAN PUBLIK MENGGUNAKAN K-MEANS CLUSTERING DI KECAMATAN SUKAGUMIWANG,” 2023, doi: 10.36040/jati.v7i2.6536

A. E. Falentino Sembiring, “Bahasa Ular untuk Pemrograman Python,” 2020.

M. Syukron Nawawi, F. Sembiring, and A. Erfina, “Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris,” PROGRAM STUDI TEKNIK INFORMATIKA-UNIVERSITAS PGRI MADIUN, pp. 789–797, 2021.

Fuadi, K. (2013). Tutorial matplotlib. http://twitter.com/sopier.

Published
2024-08-11
How to Cite
[1]
A. J. Alifah, S. Saepudin, and C. Irawan, “IMPLEMENTATION OF THE K-MEANS CLUSTERING ALGORITHM IN ANALYZING PUBLIC SATISFACTION REGARDING PUBLIC SERVICES (STUDI CASE: BALAI PENGUJIAN STANDAR INSTRUMEN TANAMAN INDUSTRI DAN PENYEGAR)”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 487-496, Aug. 2024.