TRAFFIC FLOW AND CONGESTION DETECTION WITH YOLOV8 AND BYTETRACK-BASED MULTI OBJECT TRACKING
Abstract
The rapid urbanization witnessed in cities like Bandung, Indonesia, has emerged as a pressing issue, precipitating severe traffic congestion that poses challenges to economic growth and diminishes overall quality of life. This study endeavors to confront these multifaceted challenges through the development of a sophisticated real-time traffic surveillance and control system. The proposed system utilizes the current CCTV infrastructure in the city and incorporates advanced technologies like YOLOv8 for accurate vehicle detection and ByteTrack for dynamic real-time vehicle tracking. This system utilizes a comprehensive strategy, including multi-object tracking techniques to improve the precision of congestion detection. The system was thoroughly assessed in several places in Bandung, and it showed remarkable performance metrics. Specifically, YOLOv8 achieved an impressive 80% accuracy rate in vehicle detection, showcasing its efficacy in discerning vehicles within complex urban environments. Simultaneously, ByteTrack exhibited an average error rate of 17% in vehicle counting, further Strengthening the system's capabilities in accurately quantifying vehicular traffic. Furthermore, the combination of YOLOv8 and ByteTrack in a multi-object tracking paradigm yielded an 80% accuracy rate in congestion detection, emphasizing the system's robustness in real-time traffic management scenarios. These findings underscore the immense potential of the integrated YOLOv8 and ByteTrack system in traffic management strategies and alleviating congestion in smart cities like Bandung. This research has produced precise outcomes in identifying and quantifying the traffic congestion in various scenarios.
Downloads
References
V. Rosalina, Y. Sugiyani, and A. Triayudi, “PERANCANGAN INFRASTRUKTUR JARINGAN KOMPUTER DALAM KONSEP MEMBANGUN SERANG MENUJU SMART CITY,” Jurnal PROSISKO, vol. 1, 2014.
A. S. Harahap and P. Zulvia, “Analisis Pengembangan Smart City berdasarkan Dimensi Teknologi, Sumber Daya Manusia, dan Insitutional di Kota Padang Panjang,” Media Online), vol. 4, no. 1, pp. 618–624, 2023, doi: 10.30865/klik.v4i1.1200.
F. A. Nuzir, “Smart People, Smart Mobility. Konsep Kota Pintar yang Bertumpu pada Masyarakat dan Pergerakannya di Kota Metro”, doi: 10.13140/RG.2.1.3056.4324.
M. A. Asset and S. Sugiyanto, “ANALISA BIAYA KERUGIAN KARENA MENGALAMI KONDISI KEMACETAN AKIBAT PERBAIKAN JALAN DITINJAU DARI WAKTU TUNDA PERJALANAN DAN KENAIKAN BAHAN BAKAR MINYAK (BBM) KENDARAAN,” Rang Teknik Journal, vol. 4, no. 1, pp. 143–163, Jan. 2021, doi: 10.31869/rtj.v4i1.2268.
R. Akhmad Hermawan and R. Haryatiningsih, “Dampak Kemacetan di Kota Bandung bagi Pengguna Jalan,” Bandung Conference Series: Economics Studies, vol. 2, no. 1, Jan. 2022, doi: 10.29313/bcses.v2i1.680.
V. Zinchenko, G. Kondratenko, I. Sidenko, and Y. Kondratenko, “Computer Vision in Control and Optimization of Road Traffic,” in 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 2020, pp. 249–254. doi: 10.1109/DSMP47368.2020.9204329.
C. Shiranthika, P. Premaratne, Z. Zheng, and B. Halloran, “Realtime computer vision-based accurate vehicle counting and speed estimation for highways,” in Intelligent Computing Theories and Application: 15th International Conference, ICIC 2019, Nanchang, China, August 3–6, 2019, Proceedings, Part I 15, 2019, pp. 583–592.
H. Mejia, E. Palomo, E. López-Rubio, I. Pineda, and R. Fonseca, “Vehicle speed estimation using computer vision and evolutionary camera calibration,” in NeurIPS 2021 Workshop LatinX in AI, 2021. doi: 10.52591/202112072.
B. Qi, W. Zhao, H. Zhang, Z. Jin, X. Wang, and T. Runge, “Automated traffic volume analytics at road intersections using computer vision techniques,” in 2019 5th International Conference on Transportation Information and Safety (ICTIS), 2019, pp. 161–169.
L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” 2021.
T. A. A. H. Kusuma, K. Usman, and S. Saidah, “PEOPLE COUNTING FOR PUBLIC TRANSPORTATIONS USING YOU ONLY LOOK ONCE METHOD,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 57–66, Feb. 2021, doi: 10.20884/1.jutif.2021.2.2.77.
R. Al-batat, A. Angelopoulou, S. Premkumar, J. Hemanth, and E. Kapetanios, “An End-to-End Automated License Plate Recognition System Using YOLO Based Vehicle and License Plate Detection with Vehicle Classification,” Sensors, vol. 22, no. 23, Dec. 2022, doi: 10.3390/s22239477.
A. Tonge, S. Chandak, R. Khiste, U. Khan, and L. A. Bewoor, “Traffic Rules Violation Detection using Deep Learning,” in 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2020, pp. 1250–1257. doi: 10.1109/ICECA49313.2020.9297495.
G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8.” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
P. and J. Y. and Y. D. and W. F. and Y. Z. and L. P. and L. W. and W. X. Zhang Yifu and Sun, “ByteTrack: Multi-object Tracking by Associating Every Detection Box,” in Computer Vision – ECCV 2022, G. and C. M. and F. G. M. and H. T. Avidan Shai and Brostow, Ed., Cham: Springer Nature Switzerland, 2022, pp. 1–21. doi: 10.1007/978-3-031-20047-2_1.
E. Soylu and T. Soylu, “A performance comparison of YOLOv8 models for traffic sign detection in the Robotaxi-full scale autonomous vehicle competition,” Multimed Tools Appl, vol. 83, no. 8, pp. 25005–25035, 2024, doi: 10.1007/s11042-023-16451-1.
F. M. Talaat and H. ZainEldin, “An improved fire detection approach based on YOLO-v8 for smart cities,” Neural Comput Appl, vol. 35, no. 28, pp. 20939–20954, 2023, doi: 10.1007/s00521-023-08809-1.
M. D. Anggraini, K. Kusrini, and H. Al Fatta, “SOCIAL DISTANCING DETECTION FINDING OPTIMAL ANGLE WITH YOLO V3 DEEP LEARNING METHOD,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 5, pp. 1449–1455, Oct. 2022, doi: 10.20884/1.jutif.2022.3.5.390.
M. Abouelyazid, “Comparative Evaluation of SORT, DeepSORT, and ByteTrack for Multiple Object Tracking in Highway Videos,” International Journal of Sustainable Infrastructure for Cities and Societies, vol. 8, no. 11, pp. 42–52, Nov. 2023, [Online]. Available: https://vectoral.org/index.php/IJSICS/article/view/97
H. Liang, H. Song, H. Li, and Z. Dai, “Vehicle counting system using deep learning and multi-object tracking methods,” Transp Res Rec, vol. 2674, no. 4, pp. 114–128, 2020, doi: 10.1177/0361198120912742.
J. Manurung, N. Azizi, D. Anastasya, N. Valentino, A. Sanjaya, and K. Saputra, “Deteksi Kemacetan dengan Deep Learning YOLOv4 dan Euclidean Distance Tracker pada Jalan Raya di Kota Medan,” JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), vol. 8, no. 1, pp. 57–63, 2023.
J. J. Ng, K. O. M. Goh, and C. Tee, “Traffic Impact Assessment System using Yolov5 and ByteTrack,” Journal of Informatics and Web Engineering, vol. 2, no. 2, pp. 168–188, 2023, doi: 10.33093/jiwe.2023.2.2.13.
Copyright (c) 2024 Marchel Maulana Fahrezi, Eka Angga Laksana
This work is licensed under a Creative Commons Attribution 4.0 International License.