COMBINATION OF LOGARITHMIC PERCENTAGE CHANGE-DRIVEN OBJECTIVE WEIGHTING AND MULTI-ATTRIBUTIVE IDEAL-REAL COMPARATIVE ANALYSIS IN DETERMINING THE BEST PRODUCTION EMPLOYEES

  • Sitna Hajar Hadad Computer Engineering, Akademi Ilmu Komputer Ternate, Indonesia
  • Subhan Informatics Management, Akademi Ilmu Komputer Ternate, Indonesia
  • Setiawansyah Informatics, Faculty Engineering and Computer Science, Universitas Teknokrat Indonesia, Indonesia
  • Muhammad Waqas Arshad Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
  • Aditia Yudhistira Informatics, Faculty Engineering and Computer Science, Universitas Teknokrat Indonesia, Indonesia
  • Yuri Rahmanto Computer Engineering, Faculty Engineering and Computer Science, Universitas Teknokrat Indonesia, Indonesia
Keywords: Combination, Employees, LOPCOW, MAIRCA, Selection

Abstract

The problem that occurs in the selection of the best production employees is the lack of transparency and objectivity in the selection process. Without clear procedures and well-defined criteria, employee selection decisions can be influenced by subjective preferences or irrelevant non-performance factors. This can result in injustice in employee selection and lower the morale and motivation of unselected employees. The purpose of the combination of LOPCOW and MAIRCA in determining the best production employees is to provide a holistic and adaptive framework in the employee performance evaluation process. LOPCOW allows decision makers to dynamically adjust the weight of criteria according to the level of volatility or change in the relevant environment or situation. LOPCOW offers an adaptive and responsive approach in determining the weight of criteria, enabling decision makers to respond quickly to changes occurring in the relevant environment or situation. MAIRCA is an analytical method used to assist decision makers in evaluating and selecting alternatives based on several relevant criteria or attributes. MAIRCA provides a strong framework for decision makers to make more informed and informed decisions. Combining these two methods results in a more comprehensive and accurate understanding of production employee performance, thus enabling managers to identify the most effective employees and provide rewards or development accordingly. The final results of the ranking of the best production employees obtained by JR employees get 1st place, YP employees get 2nd place, and AJL employees get 3rd place.

Downloads

Download data is not yet available.

References

A. T. Priandika and A. D. Wahyudi, “Decision Support System for Determining Exemplary Employees Using the Evaluation Method based on Distance from Average Solution (EDAS),” J. Ilm. Comput. Sci., vol. 1, no. 1, pp. 17–30, 2022, doi: 10.58602/jics.v1i1.3.

S. Harjanto, S. Setiyowati, and R. T. Vulandari, “Application of Analytic Hierarchy Process and Weighted Product Methods in Determining the Best Employees,” Indones. J. Appl. Stat., vol. 4, no. 2, p. 103, Nov. 2021, doi: 10.13057/ijas.v4i2.44059.

D. C. P. Sinaga, P. Marpaung, and B. Sianipar, “The Application of the MOORA Method in the Decision Making System for the Selection of the Best Employees at CV. Lautan Mas,” IJISTECH (International J. Inf. Syst. Technol., vol. 5, no. 2, pp. 233–239, 2021.

A. Lia Hananto, B. Priyatna, A. Fauzi, A. Yuniar Rahman, Y. Pangestika, and Tukino, “Analysis of the Best Employee Selection Decision Support System Using Analytical Hierarchy Process (AHP),” J. Phys. Conf. Ser., vol. 1908, no. 1, p. 012023, Jun. 2021, doi: 10.1088/1742-6596/1908/1/012023.

H. Sulistiani, Setiawansyah, P. Palupiningsih, F. Hamidy, P. L. Sari, and Y. Khairunnisa, “Employee Performance Evaluation Using Multi-Attribute Utility Theory (MAUT) with PIPRECIA-S Weighting: A Case Study in Education Institution,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), 2023, pp. 369–373. doi: 10.1109/ICIMCIS60089.2023.10349017.

P. Rani, R. Kumar, N. M. O. S. Ahmed, and A. Jain, “A decision support system for heart disease prediction based upon machine learning,” J. Reliab. Intell. Environ., vol. 7, no. 3, pp. 263–275, Sep. 2021, doi: 10.1007/s40860-021-00133-6.

Setiawansyah, A. A. Aldino, P. Palupiningsih, G. F. Laxmi, E. D. Mega, and I. Septiana, “Determining Best Graduates Using TOPSIS with Surrogate Weighting Procedures Approach,” in 2023 International Conference on Networking, Electrical Engineering, Computer Science, and Technology (IConNECT), 2023, pp. 60–64. doi: 10.1109/IConNECT56593.2023.10327119.

K. Govindan, H. Mina, and B. Alavi, “A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19),” Transp. Res. Part E Logist. Transp. Rev., vol. 138, p. 101967, Jun. 2020, doi: 10.1016/j.tre.2020.101967.

V. I. Ivanoti, Megananda Hervita P., Gandung Triyono, and Dyah Puji Utami, “DECISION SUPPORT SYSTEM FOR PREDICTING EMPLOYEE LEAVE USING THE LIGHT GRADIENT BOOSTING MACHINE (LIGHTGBM) AND K-MEANS ALGORITHM,” J. Tek. Inform., vol. 4, no. 3, pp. 657–667, Jun. 2023, doi: 10.52436/1.jutif.2023.4.3.1084.

S. Sukamto, A. Fitriansyah, and R. A. Nugrah, “DECISION SUPPORT SYSTEM FOR SELECTION OF PESTICIDES FOR CHILI PLANTS USING THE MABAC METHOD,” J. Tek. Inform., vol. 4, no. 5, pp. 1109–1118, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.977.

S. Riahi, A. Bahroudi, M. Abedi, and S. Aslani, “Hybrid outranking of geospatial data: Multi attributive ideal-real comparative analysis and combined compromise solution,” Geochemistry, vol. 82, no. 3, p. 125898, Sep. 2022, doi: 10.1016/j.chemer.2022.125898.

S. Hadian, E. Shahiri Tabarestani, and Q. B. Pham, “Multi attributive ideal-real comparative analysis (MAIRCA) method for evaluating flood susceptibility in a temperate Mediterranean climate,” Hydrol. Sci. J., vol. 67, no. 3, pp. 401–418, Feb. 2022, doi: 10.1080/02626667.2022.2027949.

G. Zhu, J. Ma, and J. Hu, “Evaluating biological inspiration for biologically inspired design: An integrated DEMATEL‐MAIRCA based on fuzzy rough numbers,” Int. J. Intell. Syst., vol. 36, no. 10, pp. 6032–6065, Oct. 2021, doi: 10.1002/int.22541.

M. C. Joe Anand, K. Kalaiarasi, N. Martin, B. Ranjitha, S. S. Priyadharshini, and M. Tiwari, “Fuzzy C-Means Clustering with MAIRCA -MCDM Method in Classifying Feasible Logistic Suppliers of Electrical Products,” in 2023 First International Conference on Cyber Physical Systems, Power Electronics and Electric Vehicles (ICPEEV), Sep. 2023, pp. 1–7. doi: 10.1109/ICPEEV58650.2023.10391835.

T. Van Dua, D. Van Duc, N. C. Bao, and D. D. Trung, “Integration of objective weighting methods for criteria and MCDM methods: application in material selection,” EUREKA Phys. Eng., no. 2, pp. 131–148, Mar. 2024, doi: 10.21303/2461-4262.2024.003171.

S. Setiawansyah and A. Sulistiyawati, “Penerapan Metode Logarithmic Percentage Change-Driven Objective Weighting dan Multi-Attribute Utility Theory dalam Penerimaan Guru Bahasa Inggris,” J. Artif. Intell. Technol. Inf., vol. 2, no. 2, pp. 62–75, 2024, doi: 10.58602/jaiti.v2i2.119.

S. Chatterjee and S. Chakraborty, “A study on the effects of objective weighting methods on TOPSIS-based parametric optimization of non-traditional machining processes,” Decis. Anal. J., vol. 11, p. 100451, Jun. 2024, doi: 10.1016/j.dajour.2024.100451.

S. Korucuk, A. Aytekin, Ö. Görçün, V. Simic, and Ö. Faruk Görçün, “Warehouse site selection for humanitarian relief organizations using an interval-valued fermatean fuzzy LOPCOW-RAFSI model,” Comput. Ind. Eng., vol. 192, p. 110160, Jun. 2024, doi: 10.1016/j.cie.2024.110160.

Y. Alkhalifi, M. R. Firdaus, D. Ismunandar, and I. Herliawan, “Analisis Perbandingan Metode SMART Dan MOORA Pada Pemilihan Karyawan Terbaik Klinik Kecantikan,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 1972–1982, 2024, doi: 10.30865/klik.v4i4.1620.

V. H. Saputra and S. Setiawansyah, “Penerapan Metode SWARA dan Grey Relational Analysis Dalam Pemilihan Karyawan Terbaik,” J. Artif. Intell. Technol. Inf., vol. 2, no. 1, pp. 51–61, 2024, doi: 10.58602/jaiti.v2i1.107.

Published
2024-06-04
How to Cite
[1]
S. H. Hadad, S. Subhan, S. Setiawansyah, M. W. Arshad, A. Yudhistira, and Y. Rahmanto, “COMBINATION OF LOGARITHMIC PERCENTAGE CHANGE-DRIVEN OBJECTIVE WEIGHTING AND MULTI-ATTRIBUTIVE IDEAL-REAL COMPARATIVE ANALYSIS IN DETERMINING THE BEST PRODUCTION EMPLOYEES”, J. Tek. Inform. (JUTIF), vol. 5, no. 3, pp. 843-853, Jun. 2024.