• Adanti Wido Paramadini Biomedical Engineering, Faculty of Telecommunications and Electronics Engineering, Institut Teknologi Telkom Purwokerto, Indonesia
  • Dasril Aldo Informatics Engineering, Faculty of Informatics, Institut Teknologi Telkom Purwokerto, Indonesia
  • M. Yoka Fathoni Information Technology, University Kuala Lumpur, Malaysia
  • Yohani Setiya Rafika Nur Informatics Engineering, Faculty of Informatics, Institut Teknologi Telkom Purwokerto, Indonesia
  • Dading Qolbu Adi Informatics Engineering, Faculty of Informatics, Institut Teknologi Telkom Purwokerto, Indonesia
Keywords: Clinical Data Analysis, Dempster-Shafer, Expert System, Medical Decision Support System, Systemic Inflammatory Response Syndrome (SIRS)


Systemic Inflammatory Response Syndrome (SIRS) is a generalized inflammatory condition, triggered by various factors such as infection or trauma, which can lead to serious complications if not treated quickly. This condition is characterized by symptoms such as fever or hypothermia, tachycardia, tachypnea, and changes in white blood cell count. Complications that can arise from SIRS include Acute Respiratory Distress Syndrome (ARDS), which results in fluid in the alveoli and requires mechanical ventilation; acute encephalopathy, which leads to brain dysfunction; Asidosis Metabolik, indicating liver damage; hemolysis, which results in the breakdown of red blood cells; and Deep Vein Thrombosis (DVT), which is at risk of causing pulmonary embolism. To overcome this diagnostic challenge, this study implements the Dempster-Shafer method in an expert system, where it allows the aggregation and combination of various sources of evidence to produce degrees of belief and degrees of plausibility for each diagnostic hypothesis. By accounting for uncertainties and contradictions in the data, the system improves diagnostic accuracy through dynamically weighting and updating beliefs based on available evidence. This process allows early and accurate identification of SIRS complications, supporting appropriate medical intervention. System evaluation showed diagnostic accuracy of 93%, confirming the potential of expert systems in supporting rapid and precise clinical decision-making in managing SIRS complications.


Download data is not yet available.


S. Chakraborty, H. Kaynak, dan J. A. Pagán, “Bridging hospital quality leadership to patient care quality,” Int. J. Prod. Econ., vol. 233, hlm. 108010, Mar 2021, doi: 10.1016/j.ijpe.2020.108010.

S. Mamoor, “Global transcriptional profiling of CD15+ granulocytes from patients with septic shock and systemic inflammatory response syndrome (SIRS).” 2 Oktober 2019. doi: 10.31219/

K. Grozdanovski dkk., “Association of Systemic Inflammatory Response Syndrome with Bacteremia in Patients with Sepsis,” PRILOZI, vol. 40, no. 2, hlm. 51–56, Okt 2019, doi: 10.2478/prilozi-2019-0014.

N. V. Zotova, Y. A. Zhuravleva, T. E. Zubova, dan E. Y. Gusev, “Integral estimation of systemic inflammatory response under sepsis,” Gen. Physiol. Biophys., vol. 39, no. 01, hlm. 13–26, 2020, doi: 10.4149/gpb_2019043.

N. Cui dkk., “Deep vein thrombosis in acute respiratory distress syndrome caused by bacterial pneumonia,” BMC Pulm. Med., vol. 21, no. 1, hlm. 264, Agu 2021, doi: 10.1186/s12890-021-01632-1.

Q. Gong, Y. Xue, X. Li, L. Song, dan L. Zhu, “DL-3-n-butylphthalide attenuates lipopolysaccharide-induced acute lung injury via SIRT1-dependent and -independent regulation of Nrf2,” Int. Immunopharmacol., vol. 74, hlm. 105658, Sep 2019, doi: 10.1016/j.intimp.2019.05.043.

Dr. M. Mattous, Dr. N. Jbili, dan Dr. J. Laoutid, “The Risk of Acute Respiratory Distress Syndrome in Patients with Subarachnoid Hemorrhage, About A Case,” Sch. J. Med. Case Rep., vol. 08, no. 02, hlm. 245–247, Feb 2020, doi: 10.36347/sjmcr.2020.v08i02.040.

V. V. Liubchenko, N. O. Komleva, S. L. Zinovatna, dan J. Briggs, “Methodology for illness detection by data analysis techniques,” Appl. Asp. Inf. Technol., vol. 6, no. 3, hlm. 273–285, Sep 2023, doi: 10.15276/aait.06.2023.19.

D. S. Br Ginting, “Web-Based Expert System for Diagnosis Mycetoma Using Dempster-Shafer Methods,” Instal J. Komput., vol. 15, no. 01, hlm. 1–8, Jun 2023, doi: 10.54209/jurnalkomputer.v15i01.52.

G. Gunadi dan A. Nursami, “EXPERT SYSTEM FOR DIAGNOSIS OF KIDNEY DISEASE WITH DEMPSTER SHAFER METHOD AT MEDIKA PLAZA CLINIC,” J. DISPROTEK, vol. 14, no. 2, hlm. 166–176, Jul 2023, doi: 10.34001/jdpt.v14i2.4028.

J. Manurung, Y. Perwira, dan B. Sinaga, “Expert System to Diagnose Dental and Oral Disease Using Naive Bayes Method,” dalam 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM), Laguboti, North Sumatra, Indonesia: IEEE, Okt 2022, hlm. 01–04. doi: 10.1109/ICOSNIKOM56551.2022.10034871.

A. Ellouze, O. Kahouli, M. Ksantini, H. Alsaif, A. Aloui, dan B. Kahouli, “Artificial Intelligence-Based Diabetes Diagnosis with Belief Functions Theory,” Symmetry, vol. 14, no. 10, hlm. 2197, Okt 2022, doi: 10.3390/sym14102197.

I. Istiadi, E. B. Sulistiarini, R. Joegijantoro, dan D. U. Effendy, “Infectious Disease Expert System Using Dempster Shafers With Recommendations for Health Services,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 4, no. 1, hlm. 17–27, Feb 2020, doi: 10.29207/resti.v4i1.1332.

A. Iskandar, “Sistem Pakar Dalam Mendiagnosa Penyakit Parkinson Menerapkan Metode Dempster-Shafer,” J. Inf. Syst. Res. JOSH, vol. 4, no. 3, hlm. 847–854, Apr 2023, doi: 10.47065/josh.v4i3.3320.

Y. B. Arya, “Flash Damage Expert System Using the Dempster Shafer Method,” Int. J. Mech. Comput. Manuf. Res., vol. 12, no. 1, hlm. 10–15, Mei 2023, doi: 10.35335/computational.v12i1.92.

S. Suryadin, Nur Fitrianingsih, dan Ita Fitriati, “Design Of An Expert System To Diagnose Diseases In Onion Plants Using The Web-Based Dempster Shafer Method,” Eng. J. Mechatron. Educ., vol. 1, no. 1, hlm. 28–35, Jan 2024, doi: 10.59923/mechatronics.v1i1.47.

N. Elmi, Rolly, dan A. Dermawan, “APPLICATION OF EXPERT SYSTEM USING FORWARD CHAINING METHOD FOR WEB-BASED DIAGNOSIS OF CHILD DIARRHEA,” J. Tek. Inform. Jutif, vol. 3, no. 3, hlm. 553–562, Jun 2022, doi: 10.20884/1.jutif.2022.3.3.244.

A. Ghasemi dan M. Naeimaeyi Aali, “Clinical Reasoning and Artificial Intelligence,” Ann. Mil. Health Sci. Res., vol. 21, no. 1, Agu 2023, doi: 10.5812/amh-134440.

L. J. Muhammad, E. J. Garba, N. D. Oye, G. M. Wajiga, dan A. B. Garko, “Fuzzy rule-driven data mining framework for knowledge acquisition for expert system,” dalam Translational Bioinformatics in Healthcare and Medicine, Elsevier, 2021, hlm. 201–214. doi: 10.1016/B978-0-323-89824-9.00017-3.

“EXPERT SYSTEM TO DIFFERENT MIXED DISEASE IN BABY USING CBR (CASE BASE REASONING) METHOD,” J. Crit. Rev., vol. 7, no. 05, Mar 2020, doi: 10.31838/jcr.07.05.08.

M. Rumsamrong, A. Chiou, dan L. Li, “Self-Explanatory Capabilities in Intelligent Decision Support Systems in Resource Management,” dalam Complex, Intelligent, and Software Intensive Systems, vol. 993, L. Barolli, F. K. Hussain, dan M. Ikeda, Ed., dalam Advances in Intelligent Systems and Computing, vol. 993. , Cham: Springer International Publishing, 2020, hlm. 356–367. doi: 10.1007/978-3-030-22354-0_32.

D. Aldo, “Sistem Pakar Diagnosis Hama Dan Penyakit Bawang Merah Menggunakan Metode Dempster Shafer,” Komputika J. Sist. Komput., vol. 9, no. 2, hlm. 85–93, Okt 2020, doi: 10.34010/komputika.v9i2.2884.

Agussalim, N. Astuti Triana, E. Maya Safitri, A. Wulansari, dan S. Fitri Ana Wati, “Accuracy of Kidney Disease Expert System Based On Certainty Factor and Dempster Shafer Algorithm,” IJCONSIST J., vol. 3, no. 2, hlm. 19–24, Jun 2022, doi: 10.33005/ijconsist.v3i2.66.

How to Cite
A. Wido Paramadini, Dasril Aldo, M. Yoka Fathoni, Yohani Setiya Rafika Nur, and Dading Qolbu Adi, “EXPERT SYSTEM WITH DEMPSTER-SHAFER METHOD FOR EARLY IDENTIFICATION OF DISEASES DUE TO COMPLICATIONS SYSTEMIC INFLAMMATORY RESPONSE SYNDROME”, J. Tek. Inform. (JUTIF), vol. 5, no. 3, pp. 891-901, Jun. 2024.