DECISION TREE OPTIMIZATION IN HEART FAILURE DIAGNOSTICS: A PARTICLE SWARM OPTIMIZATION APPROACH

  • Sumarna Informatics, Faculty of Information Technology, Universitas Nusa Mandiri, Indonesia
  • Sartini Informatics, Faculty of Information Technology, Universitas Nusa Mandiri, Indonesia
  • Witriana Endah Pangesti Information Systems, Faculty of Information Technology, Universitas Nusa Mandiri, Indonesia
  • Rachmat Suryadithia Information Systems, Faculty of Informatics Engineering, Universitas Bina Sarana Informatika, Indonesia
  • Verry Riyanto Information Systems, Faculty of Informatics Engineering, Universitas Bina Sarana Informatika, Indonesia
Keywords: Data Mining, Decission Tree, Heart Failure Diagnosis, Optimization, Particle Swarm Optimization

Abstract

The rapid advancement of technology has made the implementation of accurate diagnostic methods for serious diseases like heart failure extremely important. Heart failure, being a leading cause of death worldwide, necessitates precise and accurate diagnostic techniques. The problem with conventional diagnostic methods is that they often fail to effectively accommodate the complexity of clinical data, leading to an increase in mortality rates due to heart failure. Previous research has employed various data analysis methods, but there are still fluctuations in the accuracy of results. The aim of this study is to enhance the accuracy of heart failure diagnosis by integrating the Decision Tree (DT) method with Particle Swarm Optimization (PSO) optimization. This research involves collecting and preprocessing heart failure data, followed by the development of a DT model. This model is then optimized using the PSO technique. The study uses a dataset from the UCI Repository, involving testing and validation processes to measure the model's effectiveness. The results show a significant improvement in accuracy and the Area Under Curve (AUC) after applying PSO. Accuracy increased from 79.92% to 85.29%, and AUC from 0.706% to 0.794%. The conclusion is that the integration of DT and PSO successfully improved the accuracy and reliability of the model in diagnosing heart failure. This innovation offers potential for further research in integrating optimization techniques in health data analysis, with the possibility of application in various clinical scenarios.

Downloads

Download data is not yet available.

References

M. Saqlain, W. Hussain, N. A. Saqib, and M. A. Khan, “Identification of Heart Failure by Using Unstructured Data of Cardiac Patients,” in Proceedings of the International Conference on Parallel Processing Workshops, 2016, vol. 2016-Septe, pp. 426–431, doi: 10.1109/ICPPW.2016.66.

N. Priyanka and P. Ravikumar, “Usage of data mining techniques in predicting the heart diseases - Naïve Bayes & decision tree,” 2017, doi: 10.1109/ICCPCT.2017.8074215.

F. S. Alotaibi, “Implementation of machine learning model to predict heart failure disease,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6, pp. 261–268, 2019, doi: 10.14569/ijacsa.2019.0100637.

B. Wang et al., “A Multi-Task Neural Network Architecture for Renal Dysfunction Prediction in Heart Failure Patients With Electronic Health Records,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2956859.

D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 1–16, 2020, doi: 10.1186/s12911-020-1023-5.

D. Chicco and L. Oneto, “An Enhanced Random Forests Approach to Predict Heart Failure From Small Imbalanced Gene Expression Data,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 18, no. 6, 2021, doi: 10.1109/TCBB.2020.3041527.

A. Ishaq et al., “Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques,” IEEE Access, vol. 9, pp. 39707–39716, 2021, doi: 10.1109/ACCESS.2021.3064084.

R. A. M. Elghalid, A. Alwirshiffani, A. A. I. Mohamed, F. H. A. Aldeeb, and A. Andiasha, “Comparison of Some Machine Learning Algorithms for Predicting Heart Failure,” 2022, doi: 10.1109/ICEMIS56295.2022.9914325.

D. Yuliandari, A. Wuryanto, F. A. Sariasih, Sidik, and F. A. Sariasih, “Improving the Accuracy of Heart Failure Prediction Using the Particle Swarm Optimization Method,” Sink. J. dan Penelit. Tek. Inform., vol. 9, no. 1, pp. 210–220, 2024, doi: https://doi.org/10.33395/sinkron.v9i1.13017 e-ISSN.

I. Nawawi, “OPTIMISASI PEMILIHAN FITUR UNTUK PREDIKSI GAGAL JANTUNG: FUSION RANDOM FOREST DAN PARTICLE SWARM OPTIMIZATION,” Inti, vol. 18, no. 2, 2024.

I. M. D. Priyatama and Ridwansyah, “Klasifikasi Anak Berkebutuhan Khusus Tunagrahita Menggunakan Metode Algoritma C4.5,” Paradigma, vol. 24, no. 1, pp. 90–95, 2022, doi: https://doi.org/10.31294/paradigma.v24i1.1087.

R. Ridwansyah, V. Riyanto, A. Hamid, S. Rahayu, and J. J. Purnama, “Grouping Data in Predicting Infant Mortality Using K-Means and Decision Tree,” Paradigma, vol. 24, no. 2, pp. 168–174, 2022, doi: 10.31294/paradigma.v24i2.1399.

Ridwansyah, I. Ariyati, and S. Faizah, “PARTICLE SWARM OPTIMIZATION BERBASIS CO-EVOLUSIONER DALAM EVALUASI KINERJA ASISTEN DOSEN,” J. SAINTEKOM, vol. 9, no. 2, pp. 165–177, 2019, doi: https://doi.org/10.33020/saintekom.v9i2.96.

I. Ariyati, Ridwansyah, and Suhardjono, “Implementasi Particle Swarm Optimization untuk Optimalisasi Data Mining Dalam Evaluasi Kinerja Asisten Dosen,” J. Inform. dan Komput., vol. 3, no. 2, pp. 70–75, 2018, [Online]. Available: https://ejournal.akakom.ac.id/index.php/jiko/article/view/127/pdf.

Ridwansyah and E. Purwaningsih, “Particle Swarm Optimization Untuk Meningkatkan Akurasi Prediksi Pemasaran Bank,” J. PILAR Nusa Mandiri, vol. 14, no. 1, pp. 83–88, 2018.

V. Riyanto, A. Hamid, and Ridwansyah, “Prediction of Student Graduation Time Using the Best Algorithm,” Indones. J. Artif. Intell. Data Min., vol. 2, no. 2, pp. 1–9, 2019, doi: http://dx.doi.org/10.24014/ijaidm.v2i1.6424.

J. J. Purnama, H. M. Nawawi, S. Rosyida, Ridwansyah, and Risandar, “Klasifikasi Mahasiswa Her Berbasis Algortima Svm Dan Decision Tree,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1253–1260, 2019, doi: 10.25126/jtiik.202073080.

S. Suhardjono, A. Sudradjat, B. A. Wahid, H. Sugiarto, and H. Nurdin, “Prediction Of Infant Mortality Using The Decission Tree And Genetic Algorithm Methods,” Paradigma, vol. 25, no. 1, 2023, doi: https://doi.org/10.31294/p.v25i1.1819.

I. Ariyati, S. Rosyida, K. Ramanda, V. Riyanto, S. Faizah, and Ridwansyah, “Optimization of the Decision Tree Algorithm Used Particle Swarm Optimization in the Selection of Digital Payments,” in Journal of Physics: Conference Series, 2020, vol. 1641, no. 1, doi: 10.1088/1742-6596/1641/1/012090.

Suhardjono, G. Wijaya, and A. Hamid, “PREDIKSI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN SVM BERBASIS PSO,” Bianglala Inform., vol. 7, no. 2, pp. 97–101, 2019, doi: https://doi.org/10.31294/bi.v7i2.6654.g3731.

Published
2024-05-27
How to Cite
[1]
S. Sumarna, S. Sartini, W. E. Pangesti, R. Suryadithia, and V. Riyanto, “DECISION TREE OPTIMIZATION IN HEART FAILURE DIAGNOSTICS: A PARTICLE SWARM OPTIMIZATION APPROACH”, J. Tek. Inform. (JUTIF), vol. 5, no. 3, pp. 739-746, May 2024.