• Nadya Alinda Rahmi Information System Department, Computer Science Faculty, Putra Indonesia University YPTK Padang, Indonesia
  • Rahmatia Wulan Dari Information System Department, Computer Science Faculty, Putra Indonesia University YPTK Padang, Indonesia
Keywords: consumer sentiment analysis, marketplace, natural language processing (NLP), product comment


Market product reviews are invaluable information if processed carefully. The process of analyzing product reviews is more than just considering star ratings; Comprehensive examination of the overall content of review comments is essential to extracting the nuances of meaning conveyed by the reviewer. The problem currently occurring in analyzing reviews of product purchases in the marketplace is the large number of abbreviations and non-standard language used by commenters, making it difficult for the system to understand. Therefore, a Natural Language Processing (NLP) approach is needed to improve the language in the content of review comments so as to achieve maximum performance in sentiment analysis. This research utilizes the KNN and TF-IDF algorithms, coupled with NLP techniques, to categorize Muslim fashion product reviews into two different groups that is positive and negative. The NLP-enhanced classification achieved 76.92% accuracy, 80.00% precision, and 74.07% recall, surpassing the results obtained without NLP, which had 69.23% accuracy, 80.00% precision, and 64.52 recall. %. Frequently appearing words in reviews serve as a description of collective buyer sentiment regarding the product. Positive reviews indicate customer satisfaction with the quality, speed of delivery, and price of the goods, while negative reviews indicate dissatisfaction with factors such as color differences and differences in the number of items received.


Download data is not yet available.


P. Danisewicz dan I. Elard, “The real effects of financial technology: Marketplace lending and personal bankruptcy,” J. Bank. Financ., vol. 155, no. August, hal. 106986, 2023, doi: 10.1016/j.jbankfin.2023.106986.

Q. Ma, L. Xu, S. Anwar, dan Z. Lu, “Banking competition and the use of shadow credit: Evidence from lending marketplaces,” Glob. Financ. J., vol. 58, no. July, hal. 100884, 2023, doi: 10.1016/j.gfj.2023.100884.

J. A. Cano, A. A. Londoño-Pineda, E. A. Campo, dan S. A. Fernández, “Sustainable business models of e-marketplaces: An analysis from the consumer perspective,” J. Open Innov. Technol. Mark. Complex., vol. 9, no. 3, 2023, doi: 10.1016/j.joitmc.2023.100121.

R. V. Tkachuk, D. Ilie, R. Robert, V. Kebande, dan K. Tutschku, “Towards efficient privacy and trust in decentralized blockchain-based peer-to-peer renewable energy marketplace,” Sustain. Energy, Grids Networks, vol. 35, hal. 101146, 2023, doi: 10.1016/j.segan.2023.101146.

D. Dolejška, M. Koutenský, V. Veselý, dan J. Pluskal, “Busting up Monopoly: Methods for modern darknet marketplace forensics,” Forensic Sci. Int. Digit. Investig., vol. 46, no. October, 2023, doi: 10.1016/j.fsidi.2023.301604.

K. Wang, F. Yan, Y. Zhang, Y. Xiao, dan L. Gu, “Supply Chain Financial Risk Evaluation of Small- And Medium-Sized Enterprises under Smart City,” J. Adv. Transp., vol. 2020, 2020, doi: 10.1155/2020/8849356.

J. Wang, “A Management Model of Small-and Medium-Sized Enterprises Based on Deep Learning Algorithm,” Sci. Program., vol. 2021, no. 1, 2021, doi: 10.1155/2021/5996597.

M. S. Satar dan G. Alarifi, “Factors of E-Business Adoption in Small and Medium Enterprises: Evidence from Saudi Arabia,” Hum. Behav. Emerg. Technol., vol. 2022, hal. 1–13, 2022, doi: 10.1155/2022/2445624.

Y. Shou, “Venture Risk of Small- and Medium-Sized Sci-Tech Enterprises Based on Markov Model,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/2032771.

P. Li, S. Zheng, H. Si, dan K. Xu, “Critical Challenges for BIM Adoption in Small and Medium-Sized Enterprises: Evidence from China,” Adv. Civ. Eng., vol. 2019, 2019, doi: 10.1155/2019/9482350.

Z. Chen, “HKUST Library Reproduction is prohibited without the author’s prior written consent,” Thesis, no. May, 2020.

V. Williams, O. Flannery, dan A. Patel, “Eco-score labels on meat products: Consumer perceptions and attitudes towards sustainable choices,” Food Qual. Prefer., vol. 111, no. July, hal. 104973, 2023, doi: 10.1016/j.foodqual.2023.104973.

P. D. de Araújo, W. M. C. Araújo, L. Patarata, dan M. J. Fraqueza, “Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products,” Meat Sci., vol. 193, no. January, 2022, doi: 10.1016/j.meatsci.2022.108952.

J. Cantillo, J. C. Martín, dan C. Román, “Understanding consumers’ perceptions of aquaculture and its products in Gran Canaria island: Does the influence of positive or negative wording matter?,” Aquaculture, vol. 562, no. August 2022, 2023, doi: 10.1016/j.aquaculture.2022.738754.

Y. Gui dan B. Gong, “Quality Assurance Competition Strategy under B2C Platform,” Discret. Dyn. Nat. Soc., 2020, doi: 10.1155/2016/6587872.

S. A. Nchimbi, M. Kisangiri, M. A. Dida, dan A. A. Barakabitze, “Design a Services Architecture for Mobile-Based Agro-Goods Transport and Commerce System,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/6041197.

J. Zhang dan C. Zhong, “Differential Privacy-Based Double Auction for Data Market in Blockchain-Enhanced Internet of Things,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/8038846.

F. Skjeret dkk., “Willingness to Pay for Conditional Automated Driving among Segments of Potential Buyers in Europe,” J. Adv. Transp., vol. 2023, 2023, doi: 10.1155/2023/8953109.

A. S. Al-Adwan dan H. Yaseen, “Solving the product uncertainty hurdle in social commerce: The mediating role of seller uncertainty,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, 2023, doi: 10.1016/j.jjimei.2023.100169.

J. Ato Nyarko, K. Osei Akuoko, J. Mensah Dapaah, dan M. Gyapong, “Exploring the Operations of Itinerant Medicine Sellers within Urban Bus Terminals in Kumasi, Ghana,” Heal. Policy OPEN, vol. 5, no. November, hal. 100108, 2023, doi: 10.1016/j.hpopen.2023.100108.

W. M. W. Lam dan X. Liu, “Dancing with rivals: How does platform’s information usage benefit independent sellers?,” Eur. J. Oper. Res., vol. 309, no. 1, hal. 421–431, 2023, doi: 10.1016/j.ejor.2022.12.026.

K. J. De Meyst, E. Cardinaels, dan A. Van den Abbeele, “CSR disclosures in buyer-seller markets: The impact of assurance of CSR disclosures and incentives for CSR investments,” Accounting, Organ. Soc., no. August, hal. 101498, 2023, doi: 10.1016/j.aos.2023.101498.

F. Etro, “Platform competition with free entry of sellers,” Int. J. Ind. Organ., vol. 89, hal. 102903, 2023, doi: 10.1016/j.ijindorg.2022.102903.

M. Nurul, N. Soewarno, dan I. Isnalita, “Pengaruh Jumlah Pengunjung, Ulasan Produk, Reputasi Toko Dan Status Gold Badge pada Penjualan Dalam Tokopedia,” E-Jurnal Akunt., vol. 28, no. 3, hal. 1855, 2019, doi: 10.24843/eja.2019.v28.i03.p14.

A. A. Lutfi, A. E. Permanasari, dan S. Fauziati, “Corrigendum: Sentiment Analysis in the Sales Review of Indonesian Marketplace by Utilizing Support Vector Machine,” J. Inf. Syst. Eng. Bus. Intell., vol. 4, no. 2, hal. 169, 2018, doi: 10.20473/jisebi.4.2.169.

D. P. M. Artanti, “Syukur A Prihandono A and Setiadi DRIM, 2018 Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Naıve Bayes …,” Nas. Sist. Inf, hal. 8–9, 2018.

K. Norman, Z. Li, Y. T. Oh, G. Golwala, S. Sundaram, dan J. Allebach, “Application of natural language processing to an online fashion marketplace,” IS T Int. Symp. Electron. Imaging Sci. Technol., hal. 1–5, 2018, doi: 10.2352/ISSN.2470-1173.2018.10.IMAWM-444.

H. Hendri, - Masriadi, dan - Mardison, “A Novel Algorithm for Monitoring Field Data Collection Officers of Indonesia’s Central Statistics Agency (BPS) Using Web-Based Digital Technology,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 3, hal. 1154, 2023, doi: 10.18517/ijaseit.13.3.18302.

G. W. Nurcahyo, A. P. Gusman, dan H. Hendri, “Literature Study on Online Learning as an Impact of Covid 19 Pandemic in Education,” Proc. - 2nd Int. Conf. Comput. Sci. Eng. Eff. Digit. World After Pandemic (EDWAP), IC2SE 2021, hal. 1–5, 2021, doi: 10.1109/IC2SE52832.2021.9792065.

H. Hendri, H. Awal, dan Mardison, “Solar-Cell Implementation for Supporting Tourist Facilities and Tourism Promotion Media,” J. Phys. Conf. Ser., vol. 1783, no. 1, hal. 012058, 2021, doi: 10.1088/1742-6596/1783/1/012058.

H. Hendri, S. Defit, dan Mardison, “Implementation Kolmogorov-Smirnov Method on Queue System Simulation,” J. Comput. Sci. Inf. Technol., vol. 7, no. March, hal. 30–38, 2021, doi: 10.35134/jcsitech.v7i2.5.

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, pp. 1–13, 2018, doi: 10.14421/jiska.2018.31-01.

J. Riany, M. Fajar, and M. P. Lukman, “Penerapan Deep Sentiment Analysis pada Angket Penilaian Terbuka Menggunakan K-Nearest Neighbor,” Sisfo, vol. 06, no. 01, pp. 147–156, 2016, doi: 10.24089/j.sisfo.2016.09.011.

P. Kerja, J. Adlinnas, K. M. Lhaksmana, and D. Richasdy, “Implementasi Metode TF-IDF dan K-Nearest Neighbor,” vol. 7, no. 3, pp. 10061–10071, 2020.

I. Arnawa, “Analisis Sentimen pada Media Sosial Terhadap Perkuliahan Hybrid Menggunakan Algoritma TF IDF dan K Nearest Neighbor,” J. Sist. dan Inform., pp. 40–46, 2022.

How to Cite