SALES STOCK FORECASTING SYSTEM USING TREND MOMENT METHOD (STUDY CASE: WARCAM STORE)

  • Maulidia Putri Iriyanti Sistem Informasi, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma, Indonesia
  • Ana Kurniawati Sistem Informasi, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma, Indonesia
  • Widiastuti Sistem Informasi, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma, Indonesia
Keywords: Data Mining, Forecasting, Trend Moment, Website

Abstract

The Warcam store is a store that sells various frozen food products since 2019. The sales process at this Warcam store often experiences a shortage or excess stock of frozen food which causes losses for shop owners. This happens because Warcam Stores have not know how to calculate inventory. This study will discuss how the stages of making a forecasting system using the website-based trend moment method can help to predict frozen food stocks. The data used is data from 2019 to 2020 with in 360 transactions. The stages begin with business understanding, data understanding, and data preparation. Build a model using flowchart and perform a simulation of product forecasting calculations until an evaluation. This system was created using the PHP programming language and MySQL database with the CRISP-DM (Cross Industry Standard Process For Data Mining) approach. From the results of testing the system that has been made, this system can predict frozen food stocks with an error value of 14.52%. This error states that the forecast is still not correct, there are still excess and or lack of stock so that further research needs to be carried out using other methods.

Downloads

Download data is not yet available.

References

A. A. Putri, “Penerapan Data Mining untuk Memprediksi Penjualan Buah dan Sayur menggunakan Metode K-Nearest Neighbor (Studi Kasus: PT. Central Brastagi Utama)”, Rekayasa Teknik Informatika dan Informasi (RESOLUSI), vol.1, no. 6, pp. 354-361, 2021, DOI: -.

Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, and M. Wahyo, “Prediction for Cooperative Credit Eligibility using Data Mining Classification with C4.5 Algorithm”, Jurnal Teknik Informatika (JUTIF), vol.2, no.2, pp. 67-74, 2021, DOI: 10.20884/1.jutif.2021.2.2.49.

E. Purnomo, A. Najib, and Y. Nyura, "Penerapan Metode Trend Moment untuk Forecast Penjualan Barang di Indomaret", Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, 2018, vol. 3, no. 1, pp. 98-102, DOI: -.

A. N. Safitri, and F. A. Sianturi, "Analisa Metode Trend Moment untuk Peramalan Penjualan Stok Barang pada Toko Sun Oleh-Oleh". Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 3, no. 3, 2021, DOI: 10.9767/jikomsi.v3i1.1.95.

Zulhamidi and R. Hardianto, "Peramalan Penjualan Teh Hijau Dengan Metode Arima (Studi Kasus Pada PT. MK)", Jurnal PASTI, vol. 11, no. 3, pp. 231-244, 2017, DOI: -..

M. Kafil, "Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso", JATI (Jurnal Mahasiswa Teknik Informatika), vol. 3, no. 2, pp. 59-66, 2019, DOI: 10.36040/jati.v3i2.860.

I. Turmuzdi, and A. C. Murti. "Implementation of Trend Moment Method for Goods Stock Control", Jurnal Transformatika, vol.16, no.2, pp. 182–189, 2019, DOI: 10.26623/transformatika.v16i2.1202.

S. Amri, "Perbandingan Kerangka Model Klasifikasi untuk Pemilihan Metode Kontrasepsi dengan Pendekatan CRIPS-DM" Information Science and Library, vol. 1, no. 1, pp. 4-23, 2020, DOI: 10.26623/jisl.v1i1.2488.

M. A. Hasanah, Sopian Soim, and Ade Silvia Handayani. “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir”, Journal of Applied Informatics and Computing (JAIC), vol.5, no.2, pp. 103-108, 2021, DOI: 10.30871/jaic.v5i2.3200.

M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ”, jsi, vol. 13, no. 2, pp. 36-45, 2019. DOI: -.

E. Siswanto, E. S. Wibawa, and Z. Mustofa, "Implementasi Aplikasi Sistem Peramalan Persedian Barang Menggunakan Metode Single Moving Average Berbasis Web", Jurnal Ilmiah Elektronika dan Komputer, vol.14, no.2, 2021, pp. 224-233, DOI: 10.51903/elkom.v14i2.515.

A. Fauzi, P. D. I. Fitri, and Benrahman, "Sistem Informasi Monitoring Penjualan Dan Prediksi Stok Barang Kios Pulsa Menggunakan Moving Average Berbasis Website", Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 1, 2021, pp. 26-40, DOI: 10.35957/jatisi.v8i1.626.

O. Marsellus, Kadang, and Usman, "Perancangan Aplikasi Forecasting Penjualan Menggunakan Least Square Method (Studi Kasus Pada Toko Aneka Sari Rantepao)", Seminar Sistem Informasi dan Teknologi Informasi (SISITI), 2018, vol.7. no.2, pp. -, DOI: -.

E. L. Amalia, M. Z. Abdulullah, and M. D. Attariq, "Sistem Informasi PT Bintang Sidoraya Dengan Peramalan Penjualan Menggunakan Metode Statistical Parabolic Projection", Jurnal Buana Informatika, vol. 12, no. 2, pp. 98-105, 2021, DOI: 10.24002/jbi.v12i2.4649.

I. Yulian, D. S. Anggraeni, and Q. Aini, “Penerapan Metode Trend Moment dalam Forecasting Penjualan Produk CV. Rabbani Asyisa”. Jurnal Teknologi dan Sistem Informasi (JURTEKSI), vol. 6, no. 2, pp. 193-200, 2020, DOI: 10.33330/jurteksi.v6i2.443.

Published
2022-10-24
How to Cite
[1]
M. P. Iriyanti, A. Kurniawati, and W. Widiastuti, “SALES STOCK FORECASTING SYSTEM USING TREND MOMENT METHOD (STUDY CASE: WARCAM STORE)”, J. Tek. Inform. (JUTIF), vol. 3, no. 5, pp. 1131-1140, Oct. 2022.