APPLICATION OF PROCEDURAL CONTENT GENERATION SYSTEM IN FORMING DUNGEON LEVEL IN DUNGEON DIVER GAME
Abstract
Developers face numerous challenges in game development, one of which is the lack of games replayability due to the limited variety of levels created. The absence of level variety can lead to player boredom. The Procedural Content Generation (PCG) method provides an effective solution to address this challenge. PCG is applied with a focus on the Cellular Automata method by implementing the Von Neumann Neighborhood rule. The objective of this paper is to apply the Procedural Content Generation System method to create levels in game development. The game development process utilizes Luther's MDLC method. Testing is conducted using tiles of 32x32 units and 64x64 units, with three different test parameters: a fill percentage of 25%, 45%, and 65%. Each fill percentage is tested with three different smooth amount parameters of 2, 4, and 6, with a randomly selected seed. Performance testing results indicate that creating dungeon levels with 32x32 and 64x64 tiles yields short and relatively similar times, around 0.08 to 0.3 seconds. Functional testing reveals that a 25% fill percentage results in nearly empty rooms with no footholds, a 45% fill percentage produces levels with space and footholds, while a 65% fill percentage generates small unconnected rooms. Based on these percentages, a 45% fill percentage is considered the most appropriate for creating dungeon levels because it provides suitable space and footholds for players. Implementing PCG in game level creation not only saves time compared to manual level creation but also offers more efficient variations in dungeon shapes and difficulty levels.
Downloads
References
T. Stalnaker, “Procedural Generation of Metroidvania Style Levels,” Washington and Lee University, 2020. [Online]. Available: https://dspace.wlu.edu/bitstream/handle/11021/34738/WLURG38_Stalnaker_CSCI_2020.pdf
A. B. Moghadam and M. K. Rafsanjani, “A genetic approach in procedural content generation for platformer games level creation,” 2nd Conf. Swarm Intell. Evol. Comput. CSIEC 2017 - Proc., no. February, pp. 141–146, 2017, doi: 10.1109/CSIEC.2017.7940160.
S. Risi and J. Togelius, “Increasing generality in machine learning through procedural content generation,” Nat. Mach. Intell., vol. 2, no. 8, pp. 428–436, 2020, doi: 10.1038/s42256-020-0208-z.
A. M. Abuzuraiq, O. Alsalman, and H. Erhan, “Shopping for Game levels: A Visual Analytics Approach to Exploring Procedurally Generated Content,” ACM Int. Conf. Proceeding Ser., pp. 2–5, 2020, doi: 10.1145/3402942.3409793.
B. M. F. Viana and S. R. Dos Santos, “Procedural Dungeon Generation: A Survey,” J. Interact. Syst., vol. 12, no. 1, pp. 83–101, 2021, doi: 10.5753/jis.2021.999.
J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. N. Yannakakis, and J. Togelius, “Deep learning for procedural content generation,” Neural Comput. Appl., vol. 33, no. 1, pp. 19–37, 2021, doi: 10.1007/s00521-020-05383-8.
N. Muir and S. James, “Combining Evolutionary Search with Behaviour Cloning for Procedurally Generated Content,” Epic Ser. Comput., vol. 85, pp. 77–88, 2022, doi: 10.29007/qpkt.
C. S. Putri, E. M. A. Jonemaro, and M. A. Akbar, “Penerapan Procedural Content Generation pada Pembangkit Level Gim Maze Heksagonal,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 9, pp. 8563–8571, 2019, [Online]. Available: http://j-ptiik.ub.ac.id
C. Miller, M. Dighe, C. Martens, and A. Jhala, “Stories of the town: Balancing character autonomy and coherent narrative in procedurally generated worlds,” ACM Int. Conf. Proceeding Ser., 2019, doi: 10.1145/3337722.3341850.
M. A. Muslim, E. M. A. Jonemaro, and M. A. Akbar, “Penerapan Procedural Content Generation untuk Perancangan Level pada 2D Endless Runner Game menggunakan Genetic Algorithm,” Garuda - Garba Rujukan Digit., vol. 3, no. 5, pp. 4406–4414, 2019, [Online]. Available: https://garuda.ristekbrin.go.id/documents/detail/992300
R. C. E. Silva, N. Fachada, N. Códices, and D. De Andrade, “Procedural Game Level Generation by Joining Geometry with Hand-Placed Connectors,” pp. 1–14, 2020.
A. Gellel and P. Sweetser, “A Hybrid Approach to Procedural Generation of Roguelike Video Game Levels,” ACM Int. Conf. Proceeding Ser., 2020, doi: 10.1145/3402942.3402945.
H. Mohr, M. Eger, and C. Martens, “Eliminating the impossible: A procedurally generated murder mystery,” CEUR Workshop Proc., vol. 2282, 2018.
N. C. Rikandi and S. R. Nudin, “Rancang Bangun Visual Novel Peduli Lingkungan dengan Metode Procedural Content Generation,” J. Informatics Comput. Sci., vol. 4, no. 01, pp. 131–142, 2022, doi: 10.26740/jinacs.v4n01.p131-142.
S. Tolinsson, A. Flodhag, A. Alvarez, and J. Font, “To make sense of procedurally generated dungeons,” CHI Play 2020 - Ext. Abstr. 2020 Annu. Symp. Comput. Interact. Play, pp. 384–387, 2020, doi: 10.1145/3383668.3419890.
D. Wijaya, H. Haryanto, E. Z. Astuti, and W. Wijanarto, “Algoritme Genetika untuk Desain Level Dinamis pada Game Edukasi Kebakaran Hutan,” Komputika J. Sist. Komput., vol. 10, no. 1, pp. 69–76, 2021, doi: 10.34010/komputika.v10i1.3586.
R. I. Borman and Y. Purwanto, “Implementasi Multimedia Development Life Cycle pada Pengembangan Game Edukasi,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, pp. 119–124, 2019.
Copyright (c) 2024 Eka Wahyu Hidayat, Euis Nur Fitriani Dewi, Insan Saleh Ramadhan
This work is licensed under a Creative Commons Attribution 4.0 International License.