IMPLEMENTATION AND ANALYSIS OF THE INTERNET OF THINGS SYSTEM FOR ELECTRICAL ENERGY MONITORING AT INSTITUT TEKNOLOGI TELKOM PURWOKERTO

  • Agung Enriko I Ketut Faculty of Telecommunications Engineering and Electrical Engineering, Institut Teknologi Telkom Purwokerto, Indonesia
  • Mas Aly Afandi Faculty of Telecommunications Engineering and Electrical Engineering, Institut Teknologi Telkom Purwokerto, Indonesia
  • Herryawan Pujiharsono Faculty of Telecommunications Engineering and Electrical Engineering, Institut Teknologi Telkom Purwokerto, Indonesia
  • Fikri Nizar Gustiyana Fakulty of Electrical Engineering, Telkom University, Indonesia
  • Hedi Krishna Indonesia Telecommunication & Digital Research Institute, Indonesia
  • Filbert H. Juwono Connected Intelligence Research Group, University of Southampton, Malaysia

Abstract

Measurement of electric power usage is carried out using simple measuring instruments and the recording is still manual so that the data obtained is not real-time and accurate. This research aims to implement an electrical energy monitoring system using the Internet of Things (IoT) to obtain real-time information related to electrical energy in the education industry. This research uses an Industrial Grade Power Meter to get a more accurate measurement value. To connect the Power Meter device with the IoT system, this research uses Modbus RS485 communication and a mini PC to process data from the meter, so that the data can be sent to a server using the MQTT communication protocol, and displayed on the Dashboard. The test results of this study indicate that the monitoring system can be implemented and the system runs well with end-to-end measurement results. From the measurement results, the current value (3 phase average) has an average deviation of 0.001 Amperes, Voltage (3 phase average) has an average deviation of 0.519 V, Power factor has an average deviation of 0.012, Active power has a deviation average of 0.000 kW, reactive power with an average deviation of 0.000 kVAR, apparent power with an average deviation of 0.000 kVA and frequency with an average deviation of 0.124 Hz. Then the MQTT protocol has a quality of service with index 4 based on TIPHON standardization on delay, throughput, and packet loss parameters, and index 3 based on TIPHON standardization on jitter parameters.

Downloads

Download data is not yet available.

References

Jawa Pos, “No Title,” Jalan Industri 4.0, 2018. https://www.pressreader.com/indonesia/jawa-pos/20180406/282870846385944 (accessed Apr. 06, 2021).

G. B. C. Indonesia, “Konsumsi Energi di Sektor Pendidikan,” 2017. http://www.gbicindonesia.org/19-green-at-your-school.

R. T. Hudan, Ivan Safril, “Rancang Bangun Sistem Monitoring Daya Listrik Pada Kamar Kos Berbasis Internet of Things ( Iot ),” J. Tek. ELEKTRO, vol. 08, no. 01, pp. 91–99, 2019.

J. Lianda, D. Handarly, and A. Adam, “Sistem Monitoring Konsumsi Daya Listrik Jarak Jauh Berbasis Internet of Things,” JTERA (Jurnal Teknol. Rekayasa), vol. 4, no. 1, p. 79, 2019, doi: 10.31544/jtera.v4.i1.2019.79-84.

D. Wulandari, “Warga Muba bisa Cek dan Isi Token Listrik via Aplikasi Muba Listrik Pintar,” Bisnis .com, 2020. .

I. Nurdin, "Sistem Tenaga Listrik: Teori, Konsep, dan Aplikasi," Yogyakarta, Deepublish, 2019.

S. Tyagi and P. C. Jain, “Internet of Things using LPWAN,” no. January 2019, [Online]. Available: https://www.researchgate.net/publication/330352019_Internet_of_Things_using_LPWAN.

M. Mehta, “ESP8266 : A Breakthrough in Wireless Sensor Networks and Internet of Things,” Int. J. Electron. Commun. Eng. Technol., vol. 6, no. 8, pp. 7–11, 2015, [Online]. Available: www.iaeme.com/IJECET/index.asp.

A. Nugroho, “Mengenal Protokol MODBUS,” 2020. https://automation.or.id/2020/01/05/mengenal-protokol-modbus-bagian-1/ (accessed Apr. 06, 2021).

A. Banks, " MQTT Essentials - A Lightweight IoT Protocol," MQTT, 2019. [Online]. Available: https://mqtt.org/. [Accessed 20 Mei 2023].

S. A. Malik, I. A. Khan and S. Zeadally, "Internet of Things (IoT): Architecture, Protocols, and Security Issues.," 2020.

A. Bahadori and M. Uddin, "Quality of Service for 5G and Beyond Networks: Innovations and Challenges," IEEE Communications Magazine, vol. 58, no. 1, pp. 40-47, 2020.

R. Z. Pratama and H. Nurwarsito, “Monitoring Penggunaan Daya Listrik menggunakan Protokol MQTT berbasis Web,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10820–10826, 2019.

B. Cahyono, A. Budijanto, and Y. Alif, “Prototipe Panel Monitoring Lampu Listrik Terpusat Menggunakan Komunikasi Rs485,” pp. 1–6, 2017.

I. Harjanto, “IoT Gateway Menggunakan Protokol MQTT pada Perangkat Kendali Berbasis Modbus-RTU,” vol. VI, no. 1, pp. 12–19, 2020.

E. H. Wiguna and A. Subari, “Rancang Bangun Sistem Monitoring Ketinggian Air Dan Kelembaban Tanah Pada Penyiram Tanaman Otomatis Dengan Hmi (Human Machine Interface) Berbasis Raspberry Pi Menggunakan Software Node-Red,” Gema Teknol., vol. 19, no. 3, p. 1, 2017, doi: 10.14710/gt.v19i3.21878.

S. Electric, “EasyLogic TM PM2100 series,” pp. 1–78, 2016.

Schneider Electric, “PowerLogic Electrical network management,” pp. 79–93, 2018.

H. Arijuddin, A. Bhawiyuga, and K. Amron, “Pengembangan Sistem Perantara Pengiriman Data Menggunakan Modul Komunikasi LoRa dan Protokol MQTT Pada Wireless Sensor Network,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1655–1659, 2019.

Published
2023-06-26
How to Cite
[1]
A. E. I Ketut, M. A. Afandi, H. Pujiharsono, F. N. Gustiyana, H. Krishna, and F. H. Juwono, “IMPLEMENTATION AND ANALYSIS OF THE INTERNET OF THINGS SYSTEM FOR ELECTRICAL ENERGY MONITORING AT INSTITUT TEKNOLOGI TELKOM PURWOKERTO”, J. Tek. Inform. (JUTIF), vol. 4, no. 3, pp. 627-638, Jun. 2023.