slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Kurniawan, Rido Dwi AU - Yohannis, Alfa AU - Atmojo, Wahyu Tisno PY - 2025/09/06 Y2 - 2025/11/15 TI - Sentiment Analysis of Getcontact Application Reviews on Google Play Store Using Naive Bayes Algorithm JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.5248 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5248 SP - 2848-2858 AB - <p>In the contemporary digital era, the increasing incidence of fraud and unwanted communications has become a serious concern, driving the adoption of security apps like GetContact. This study aims to analyze public perception of the GetContact app by conducting a systematic sentiment analysis of user reviews on the Google Play Store. Using a text mining framework, 990 user reviews were collected, processed to ensure data quality, and then classified using the Naive Bayes algorithm to determine sentiment polarity. Quantitative results show a significant dominance of negative sentiment, comprising 419 reviews (42.3%), followed by positive sentiment, comprising 291 reviews (29.4%), and neutral sentiment, comprising 280 reviews (28.3%). Qualitative analysis through data visualization reveals that the primary user complaints center on basic functionality issues such as login difficulties, while positive sentiment is driven by the perception that the app is very helpful. These findings provide critical actionable insights for developers to prioritize improvements in areas of greatest user concern. This study advances sentiment analysis by demonstrating the efficacy of Naive Bayes in classifying unstructured app reviews, offering a scalable approach to evaluating user feedback in mobile app development.</p> ER -