slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Bukhori, Hilmi Aziz AU - Bukhori, Saiful AU - Anam, Syaiful AU - Yusuf, Feby Indriana AU - Sari, Meylita PY - 2025/09/02 Y2 - 2025/11/14 TI - GWO-Enhanced Hybrid Deep Learning with SHAP for Explainable TLKM.JK Stock Forecasting JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.5205 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5205 SP - 2566-2585 AB - <p>This study presents an innovative Grey Wolf Optimization (GWO)-enhanced hybrid deep learning model integrating Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Transformer, combined with SHAP for interpretable stock price forecasting of TLKM.JK from July 29, 2024, to July 29, 2025. Addressing non-linear market dynamics, the model evaluates seven experimental cases, with the GWO-optimized configuration (Case 2) achieving superior performance, with a Root Mean Squared Error (RMSE) of 75.23, Mean Absolute Error (MAE) of 58.14, and Directional Accuracy (DA) of 76.2%, surpassing the baseline by 17.4% in RMSE and 8.1% in DA. Notably, Case 2 excels during the April 2025 surge (11.8% increase, MAE 53, DA 82%) and the high-volume day of May 28, 2025 (531,309,500 shares, MAE 48), leveraging Volume (SHAP 0.45) and RSI (0.28) as key predictors. With a 4-hour convergence time on an NVIDIA RTX 3060 GPU, the model ensures computational efficiency and interpretability, making it a robust tool for traders. Despite limitations in single-stock focus and GPU dependency, this framework advances AI-driven financial forecasting by offering transparent, high-accuracy predictions, paving the way for multi-stock applications and real-time SHAP updates.</p> ER -