slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Darnita, Yulia AU - Toyib, Rozali AU - Sonita, Anisya AU - Putra, Andika PY - 2025/08/18 Y2 - 2025/11/15 TI - Automated Classification of Mungkus Fish Freshness Based on Eye and Gill Images Using the Naive Bayes Algorithm JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.5146 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5146 SP - 2107-2122 AB - <p>The problem of assessing the freshness of fish, especially Mungkus fish, is usually directed at several physical indicators, such as eye appearance, gill condition, meat quality, and odor. This traditional method is often considered inaccurate and requires certain expertise, therefore a more effective and objective method is needed to assess the freshness level of Mungkus fish, which in turn can provide benefits for both fishermen and the public in general. The solution to this problem by using the Naïve Bayes method in classifying the freshness level of Mungkus fish based on eye and gill images has proven to be a fairly efficient approach. The Naïve Bayes method itself is a simple but very effective algorithm in the field of machine learning, and operates based on Bayes' Theorem with the assumption that features are independent of each other. This method can be applied in the initial stage of classification by utilizing basic features taken from images of fish eyes and gills. Based on testing 30 new data sets, the clustering system demonstrated an accuracy rate of 66.67%, indicating that 20 data sets were correctly classified according to their actual conditions. On the other hand, 10 data sets, or 33.33%, could not be categorized correctly. Of the 30 old data sets tested, the system was able to correctly classify 19 (63.33%), while 11 (36.67%) still had errors in their classification predictions. Overall, the system successfully performed data clustering with 65% accuracy, with the remaining 35% still showing errors in the classification process.</p><p> </p> ER -